

Early Praise for Automate Your Home Using Go

A fantastic introduction to home automation programming!

➤ Doug Clarke

Cloud Engineering, Automation Specialist, Bell Canada

This book is impressive for its breadth and depth; projects are exciting and varied

with implementations that dive into core technologies such as containers,

graphing, configurations, not to mention the different hardware used. This is NOT

your little Pi project book. It’s much better!

➤ Mike Bengtson

CTO, Tack så Mycket

This book is a great resource for anyone looking to blend the power of home

automation with the efficiency of the Go programming language. It comes full of

practical insights and hands-on projects, making complex concepts accessible

and exciting. Ricardo and Mike did a great job!

➤ Mihalis Tsoukalos

Author of Mastering Go

More and more people are starting to automate their homes, and your home

deserves the best tools the industry offers. Ricardo and Mike show you how to

use Go, Docker, Prometheus, and Grafana to build top-notch home automation

projects you can easily manage with a Raspberry Pi.

➤ Maik Schmidt

Software Developer

We've left this page blank to

make the page numbers the

same in the electronic and

paper books.

We tried just leaving it out,

but then people wrote us to

ask about the missing pages.

Anyway, Eddy the Gerbil

wanted to say “hello.”

Automate Your Home Using Go
Build a Personal Data Center with Raspberry Pi, Docker,

Prometheus, and Grafana

Ricardo Gerardi

Mike Riley

The Pragmatic Bookshelf
Dallas, Texas

For our complete catalog of hands-on, practical, and Pragmatic

content for software developers, please visit https://pragprog.com.

Contact support@pragprog.com for sales, volume licensing, and support.

For international rights, please contact rights@pragprog.com.

The team that produced this book includes:

Dave ThomasPublisher:

Janet FurlowCOO:

Susannah DavidsonExecutive Editor:

Jacquelyn CarterDevelopment Editor:

Vanya WryterCopy Editor:

Potomac Indexing, LLCIndexing:

Gilson GraphicsLayout:

Copyright © 2024 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or

transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

When we are aware that a term used in this book is claimed as a trademark, the designation is

printed with an initial capital letter or in all capitals.

The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf,

PragProg and the linking g device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no

responsibility for errors or omissions, or for damages that may result from the use of information

(including program listings) contained herein.

ISBN-13: 979-8-88865-050-9

Encoded using recycled binary digits.

Book version: P1.0—August 2024

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To my parents Fatima and Wilson who taught

me how to be a kid.

To my kids Gisele, Livia, Elena, and Alice who

taught me how to be a parent.

Ricardo

To my wife Marinette who has endured me for

over 40 years, my kids Mitchell and Marielle

for a little less, and my brother Frank who

tops them all (are we really that old, bro?).

I couldn’t have been blessed with a

better family.

Mike

Contents

Acknowledgments ix

Introduction xi

Part I — Setup

1. Getting Started 3

Your Personal Data Center 4

Selecting a Raspberry Pi 6

Adding Other Hardware Components 7

Configuring the Software 8

Picking a Code Editor 11

Next Steps 14

2. Building a REST API Server 15

Writing the Code 16

Containing the Server 18

Next Steps 22

3. Deploying Your Personal Data Center 25

Deploying Applications with Linux Containers 25

Managing Source Code with Gitea 27

Monitoring and Alerting with Prometheus 32

Visualizing Data with Grafana 38

Next Steps 40

Part II — Projects

4. Networking a Temperature Monitor 45

Understanding the Pico W Device 46

Polling the Temperature 48

Connecting the Pico W to Wi-Fi 49

Creating the Pico W REST Server 51

Creating the Prometheus Exporter 58

Containing and Deploying the Exporter 65

Creating the Grafana Dashboard 68

Next Steps 73

5. Checking the (Garage) Door 75

Understanding the GPIO 76

Wiring the Magnetic Switch to the GPIO 77

Coding the Magnetic Switch 78

Sending Notifications 80

Writing the Software 82

Configuring and Testing the Application 89

Containerizing the Deployment 90

Next Steps 91

6. Lighting the Weather 93

Polling the Weather 94

Changing the Color 96

Putting It All Together 98

Configuring the Application Settings 103

Containerizing and Deploying the App 106

Next Steps 111

7. Watching the Birds 113

Setting Up the Camera and InfraRed Sensor 114

Writing the Software 115

Sending Motion Notifications 117

Containing the Application 123

Configuring the Bird Feeder 124

Next Steps 126

8. Go Build 129

Designing Additional Projects 129

Expanding the Technologies 130

Improving Security 131

Advancing Electronics 133

Having Fun 133

Index 135

Contents • viii

Acknowledgments

To start, we would like to thank the impeccable Jackie Carter for meticulously

editing this book. It is because of Jackie’s grounding and attention to detail

that this book—and all the other Pragmatic books she has edited—has clear

explanations and cogent objectives. We can’t thank you enough, Jackie, for

being there for over a decade!

We would also like to thank our tech reviewers Douglas Clarke, Greg Stewart,

John Cairns, Maik Schmidt, Mike Bengtson, and Miki Tebeka, who took time

out of their busy schedules and commitments to help refine and polish the

final release of this book.

We would also be remiss if we didn’t thank the two individuals who brought

the Pragmatic Bookshelf to life, providing us and many other talented com-

puting professionals a platform to distribute our enthusiasm, ideas, and

passion to our readers. Thank you, Dave and Andy; you guys are the best!

Finally, we would like to thank the creators and maintainers of the Go pro-

gramming language, the Linux operating systems, and other open source

projects that made this book possible. We appreciate the efforts of the open

source community to make such great software available for everyone to use.

In particular, we would like to thank Patricio Whittingslow and Scott Feldman,

who developed the open source Go Wi-Fi driver for the Raspberry Pi Pico W.

Special thanks from Ricardo:

First of all, I’d like to thank my coauthor, Mike Riley, for the opportunity to

work on this great book. Mike is a fantastic human being, a fellow technology

enthusiast, and a skillful writer and professional. I am honored to have worked

with him on this project and I hope we can work together again in the future.

I’d like to thank my good friend Douglas Clarke for his contributions to this

book and for his friendship over the years.

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Finally, I’d like to thank my daughters Gisele, Livia, Elena, and Alice for

making me the proudest father in the world. Thank you for allowing me the

time to work on another book. I love you so much.

Special thanks from Mike:

First and foremost, I have to thank my coauthor, Ricardo Gerardi, who is a

powerhouse of inspiration. Being a single parent raising four girls is chal-

lenging enough. Couple that with his day job comprised of long hours, shifting

technology climates and demanding deadlines—it just makes me shake my

head and wonder how he ever found the time to write another book, let alone

get any sleep! Ricardo, you seriously rock, man!

Big thanks goes out especially to fellow Pragmatic author Maik Schmidt and

my dear friend Mike Bengtson for their outstanding contributions to this book.

Finally, I’d like to thank my family and especially my wife Marinette who has

once again sacrificed our time together to allow me to pursue my need to put

my consuming joy for technology into words. I love you.

Acknowledgments • x

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Introduction

Welcome to a new way of thinking about using the Go programming language

to automate various facets of your home.

In this book, we walk you through building your Personal Data Center running

on a Raspberry Pi. It will use a number of Go-based tools that are commonly

employed to monitor large enterprises. Because of Go’s remarkable scalability

and simplicity, you can install these world-class open source tools that are

found in Fortune 500 data centers on a Raspberry Pi, and obtain the same

benefits as DevOps engineers and IT professionals across the globe.

Once your management applications are up and running on a Raspberry Pi,

we will proceed with building several home automation projects that use the

personal data center as a central monitoring and alerting system.

You’ll improve your skills by building upon what was learned with each suc-

cessive chapter, giving you a solid foundation of how to create your own

projects afterward. By the end of the book, you will have the skills to automate

nearly anything that uses electrical current in your home, turning dumb

appliances into smart ones while using best-in-class Go-based software to

monitor, report, and when desired, alert on any activities that might arise

during the operation of your solutions.

Who This Book Is For

This book is for developers familiar with the Go programming language who

want to do more with it than just the usual integration and microservices

that Go is typically used for.

It is also for home automation tinkerers and electronics hobbyists interested

in learning how a language like Go can be more powerful and make software

projects easier to build and maintain, especially when compared to other

languages used in home automation like Perl and Python.

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

What’s in This Book

In Chapter 1, Getting Started, on page 3, you’ll review the hardware and

software requirements necessary to follow along with building the projects in

this book. You’ll also learn how to configure some of the software prerequisites

and how to select and configure a code editor to write your Go programs.

Next, in Chapter 2, Building a REST API Server, on page 15, you’ll use the

Go programming language to build a basic REST API service and deploy it on

a Raspberry Pi. You’ll use this API server later in the book to send notifications

from your home automation projects.

In Chapter 3, Deploying Your Personal Data Center, on page 25, you’ll deploy

your personal data center by assembling and configuring software on a

Raspberry Pi that includes the key components for the enterprise-level moni-

toring and alerting environment. You’ll learn how to build containers, capture

and report on metrics, and pick up some of our own best practices experiences

working with these tools along the way.

Then, in Chapter 4, Networking a Temperature Monitor, on page 45, you’ll

build your first automation project: a networked temperature monitor that

uses a tiny Raspberry Pi Pico W and TinyGo to gather the ambient temperature

and send it to your central monitoring application running on your personal

data center.

In Chapter 5, Checking the (Garage) Door, on page 75, you’ll build a garage

door checker that uses a magnetic switch sensor and the Raspberry Pi Zero

2 GPIO interface to report whether your garage door is open or closed.

Next, in Chapter 6, Lighting the Weather, on page 93, you’ll design a dynamic

lighting solution that offers a unique way to visually identify the current

outdoor temperature in your area by controlling the colors on a Hue lighting

system via APIs.

As the final project, in Chapter 7, Watching the Birds, on page 113, you’ll

discover how to build a custom bird feeder that captures high-resolution

images of birds—and other wildlife—perched at the feeder, and send those images

as attachments to your own designated Discord server channel.

Finally, in Chapter 8, Go Build, on page 129, you’ll review some ideas on how

to further improve your skills and how to use the knowledge and experience

acquired in this book in other projects.

Introduction • xii

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

About the Hardware

Our objective for the book was to avoid as much electrical engineering and

wiring as possible. You can complete each project in this book without ever

picking up a soldering gun. While it’s commendable to use one for appropriate

cases, this book focuses more on software than hardware. We also didn’t

want to have hardware components fail as a result of poor soldering or con-

fusing wiring diagrams, so we opted to make the hardware configuration for

these projects as simple as possible to avoid any frustration or expensive

mistakes.

As you gain more confidence in your home automation skills using Go, we

recommend expanding your horizons with a good basic electronics tutorial

and a quality soldering gun. We also recommend continuing to advance your

newly acquired skills by experimenting with a variety of electric components

found on popular electronics project websites.

About the Code

While it’s the goal of this book that you learn something new in Go by working

on these featured home automation projects, this book will not cover some

of the basics of the language. To follow the examples in this book, we expect

you to know how to write basic Go programs that include variables, loops, if
conditions, and functions. Many resources are available to help you under-

stand the basics of the language. Among those, we suggest:

• A tour of Go:1 An interactive guided tour covering Go’s main features.

• Powerful Command-Line Applications in Go:2 Learn Go by building com-

mand line applications.

• Go Brain Teasers:3 Explore more advanced language concepts through

25 brain teasers.

Online Resources

You can find more about this book, as well as download the complete project

source code online on the Pragmatic Bookshelf website.4 You’ll find the book

1. https://go.dev/tour/list
2. https://pragprog.com/titles/rggo/powerful-command-line-applications-in-go/
3. https://pragprog.com/titles/d-gobrain/go-brain-teasers/
4. https://pragprog.com/titles/gohome

report erratum • discuss

About the Hardware • xiii

https://go.dev/tour/list
https://pragprog.com/titles/rggo/powerful-command-line-applications-in-go/
https://pragprog.com/titles/d-gobrain/go-brain-teasers/
https://pragprog.com/titles/gohome
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

forum there, where you can talk with other readers and with us. If you find

any mistakes, please report them on the errata page.

We hope you enjoy building the projects as much as we did, and look forward

to your comments and photos of your creations along the way. Most of all,

have fun bringing life to your ideas using the Go programming language.

Introduction • xiv

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Part I

Setup

Before you can start building various home automa-

tion projects using Go, you first need to collect the

hardware and software resources you’ll use to

construct the projects. Then we’ll create a robust

infrastructure to host our projects, using the same

scalable tools that large companies and premier

technology organizations use in their own IT opera-

tional environments.

CHAPTER 1

Getting Started

Welcome to the fascinating world of home automation. Using home automa-

tion, you can improve your home’s energy efficiency and security. You can

automate repetitive tasks that are often forgotten, like ensuring your garage

door is closed at night. You can also control your home remotely, and increase

your convenience and comfort.

While there are ready-to-use home automation solutions available in the

market, the goal of this book is to teach you how to develop your own solu-

tions. This is a perfect opportunity to practice your Go coding skills while

developing something useful, tailored to your specific needs.

In this book, you’ll use a small device, the Raspberry Pi, and the Go program-

ming language to develop four home automation projects. These projects are

fully functional and fun to build. We’ve tried to keep the source code examples

relatively short; nevertheless, you’ll apply different aspects of the Go language

that allow you to build robust programs. By working on these projects, we

expect that you’ll have some immediate benefits, but we also expect that you’ll

learn more about the concepts and tools behind them, so you can expand

and adapt them to your own needs.

Go1 is a fast, statically typed, and compiled language that allows you to build

efficient programs with relative ease. Go provides some of the flexibility pro-

vided by dynamic languages—such as Python—but the compilation process

ensures that you build reliable software that runs efficiently, even on low-

powered hardware such as the Raspberry Pi. Go is a versatile language that

allows you to build robust software not only for large enterprise projects, but

also for small applications, making it a great choice for home automation

projects.

1. https://go.dev/

report erratum • discuss

https://go.dev/
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Nearly every modern home automation solution requires both hardware

and software to make it fully functional. The projects presented in this

book are no different. Sensors and controllers need to connect to a com-

puter running code that knows how to interact with those devices. Fortu-

nately, the hardware requirements that are used in this book’s projects

are inexpensive, and the software we’ll use in the book is free, as in open

source free. Without the contributions of these dedicated open source

contributors, much of what is presented in this book would not be possi-

ble. A deep debt of gratitude to all those developers who have contributed

their time and expertise into building great software so we can build great

projects.

Your Personal Data Center

Before you can start coding the projects, you first need to set up the

infrastructure that the Go code will rely upon. In other words, you’ll build

your own personal data center that will provide the foundation for running

many Go-related projects, not just those related to home automation.

Your code will rely on these data center components that help send alerts

or notifications when thresholds are exceeded, and/or when actions are

taken.

Many of the personal data center services of this infrastructure are already

written in Go, and are the same ones used in large data centers. These services

are ideal because they use industry-standard protocols, granting you a lot of

flexibility when building the projects in the book as well as your own future

projects. And since these servers and projects are written in Go, your projects

will be able to scale to a high degree of activity as an extra benefit of using

the language.

Managing your own home automation infrastructure also gives you a deeper

understanding of what commercial systems do behind the scenes, including

all the potential data collection that may occur without your knowledge. You’ll

know what the needs of the project are, and what data needs to be captured

and evaluated. If you want to capture and manipulate more details, that’s

your choice, not the choice of the equipment manufacturer. Take a look at

the diagram on page 5 to see how these software components and services

interoperate to deliver our robust home automation solutions.

This diagram shows how the projects you’ll develop in this book make use of

the home automation infrastructure you’ll deploy in Chapter 2, Building a

REST API Server, on page 15 and Chapter 3, Deploying Your Personal Data

Center, on page 25. Projects “Door Check” and “Bird Watcher” use the Go

Chapter 1. Getting Started • 4

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Personal Data Center

Projects Go REST API

notification

notification

code
push Gitea

GrafanaPrometheus

Temp Monitor

Door Check

Weather Light

Bird Watcher

API Server

Discord

REST API to send notifications out, while projects “Temperature Monitor

(Temp Monitor)” and “Weather Light” use services from your personal data

center to collect and visualize data. Also, you can use Gitea to manage and

version control the source code of all your projects in a central location.

Joe asks:

How did you create this diagram?

The software components diagram was created using Mermaid,a an open source

JavaScript tool that renders diagrams in different formats from a text-based definition.

We chose this approach because it’s easier to create and modify relationship-based

diagrams, such as flowcharts and class charts, by defining these relationships as

text, without worrying about drawings, positioning, and arrow attachment. Also,

because it’s text-based, we can version control the diagrams and keep them in the

same repository where we keep our code.

a. https://mermaid.js.org

To deploy these services, you’ll need hardware to run it on. In this chapter,

we’ll first take a look at the hardware that we’ll use to build the various

projects in the book, starting with the Raspberry Pi. After that, we’ll briefly

summarize the software and services we rely on for the projects to work

report erratum • discuss

Your Personal Data Center • 5

https://mermaid.js.org
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

effectively. Once inventoried and set up, you’ll build in the next chapters what

we like to call your Personal Data Center.

Selecting a Raspberry Pi

The Raspberry Pi has permanently altered the home automation and technol-

ogy tinkerer landscape by making rather powerful computers and microcon-

trollers for a fraction of what their counterparts cost. It’s still mind-blowing

to realize that a Linux server more powerful than rack-mounted servers from

a decade ago can fit in the palm of your hand. In the case of the smallest Pi

computer, it even takes up less space than a stick of gum.

For a majority of the projects in the book, you’ll need, at the very least, a

Raspberry Pi 3 Model B+2 for roughly $35. Better still, a Raspberry Pi 4B3 for

the same price is an ideal tinkering model. It offers enough CPU, RAM, and

ports to deliver a flexible platform to develop these and future projects that

you may want to create. If you’re willing to spare an additional $20, you can

get the latest Raspberry Pi 54 that delivers a two to three times CPU perfor-

mance increase compared with model 4B.

Another Pi model that will support these projects, and may be beneficial when

space constraints are a concern, is the Pi Zero 2 W.5 This remarkable piece

of hardware is nearly equivalent to the performance of a Pi 3 for a third of the

price. However, because it does not have onboard USB, HDMI, Ethernet ports,

or header pins, configuring a Pi Zero takes a bit more effort and additional

hardware dongles to properly set up. Once configured, the Pi Zero 2 W is just

as manageable and easy to operate and maintain as a more expensive Pi with

more options.

One final Pi model that we’ll use is not a computer like the previously

mentioned Pi’s. The Pi Pico W6 is a fairly new $6 microcontroller that has

onboard Wi-Fi. Because it’s a microcontroller, it has its own language and is

designed for very specific jobs. Unlike a multi-purpose computer, the Pico

has limited resources and is best suited for targeted monitoring of defined

events. We’ll use this inexpensive, wireless microcontroller to transmit moni-

tored values to a REST server that will perform additional processing and

2. https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
3. https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
4. https://www.raspberrypi.com/products/raspberry-pi-5/
5. https://www.raspberrypi.com/products/raspberry-pi-zero-2-w/
6. https://www.raspberrypi.com/products/raspberry-pi-pico/?variant=raspberry-pi-pico-w

Chapter 1. Getting Started • 6

report erratum • discuss

https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-5/
https://www.raspberrypi.com/products/raspberry-pi-zero-2-w/
https://www.raspberrypi.com/products/raspberry-pi-pico/?variant=raspberry-pi-pico-w
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

make cool things happen. You need this microcontroller to work on the project

in Chapter 4, Networking a Temperature Monitor, on page 45.

Adding Other Hardware Components

While the Pi provides a powerful, cost-effective foundation to build our projects

on, its sensing and controller capabilities only go so far before they need

additional hardware to do interesting things. As such, here are additional

hardware components that we’ll use in the projects featured in this book.

Hue Starter Kit
7

Includes the Hue Bridge and two bulbs. The Hue Bridge provides the

gateway to communicate with Hue-branded accessories. This includes

not only lighting products, but also power switches that can be turned

on and off with simple commands. The white bulbs can be turned on and

off with variable degrees of brightness, and multi-colored bulbs or light

strips can use assigned colors to indicate various degrees of moods or

alert states.

Hue Lightstrip Plus Base Kit
8

The multi-colored lighting accessory we will use in the Weather Forecast

project to visually represent the current outdoor temperature, as well as

pulsate when defined temperature limits are exceeded.

Passive Infrared Sensor
9

Used to detect motion. We’ll use this component in the Bird Watcher

project to help detect when a bird (or other critters) approaches a bird

feeder.

Magnetic Contact Switch
10

Uses a switch and a magnet to indicate if two parts are in contact; for

example, indicating when a door opens or closes.

Raspberry Pi Camera Module 2
11

A decent HD-quality camera attachment for the Raspberry Pi that we can

use to capture both still photos and video. We’ll use it to capture pictures

of birds when they come to perch and feed at the Pi-powered bird feeder

we’ll build in the Bird Watcher project.

7. https://www.philips-hue.com/en-us/p/hue-white-starter-kit-e26/046677563080
8. https://www.philips-hue.com/en-us/p/hue-white-and-color-ambiance-lightstrip-plus-base-v4-80-inch/

046677555337#overview
9. https://chicagodist.com/products/adjustable-infrared-pir-motion-sensor
10. https://www.adafruit.com/product/375
11. https://www.raspberrypi.com/products/camera-module-v2/

report erratum • discuss

Adding Other Hardware Components • 7

https://www.philips-hue.com/en-us/p/hue-white-starter-kit-e26/046677563080
https://www.philips-hue.com/en-us/p/hue-white-and-color-ambiance-lightstrip-plus-base-v4-80-inch/046677555337#overview
https://www.philips-hue.com/en-us/p/hue-white-and-color-ambiance-lightstrip-plus-base-v4-80-inch/046677555337#overview
https://chicagodist.com/products/adjustable-infrared-pir-motion-sensor
https://www.adafruit.com/product/375
https://www.raspberrypi.com/products/camera-module-v2/
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Female-to-Female Jumper Wires
12

These wires will be used to connect the sensors to the Pi header pins.

Optional-Solderless Headers for Pi Zero W
13

Those who prefer a solderless approach to attaching header pins to the

Pi Zero W. This solution only requires a hammer and a few whacks to

securely seat the Pi header pins into place. The pins will make attaching

wires to the Pi Zero much easier.

The nice thing about these hardware add-ons is that you can use them not

only to extend the projects we’ll build, but you can also repurpose them for

new project ideas that better suit your specific needs once you get accustomed

to building automation solutions with Go.

Now let’s look at the software.

Configuring the Software

In addition to the hardware required to complete these projects, you also need

some software. You’ll use the software to power your Raspberry Pi devices,

codify the logic for your home automation projects, develop supporting sys-

tems—such as APIs—and run your applications as Linux containers for better

isolation. All the software you’ll use in the book is open source and available

to download from the Internet.

Raspberry Pi OS

To start, you need an operating system for your Raspberry Pi devices. While

many options are available out there, some better suited for more advanced

users and some beginner friendly, we’ll standardize on the official Raspberry

Pi OS for the book’s projects. This operating system provides a good mix of

features and stability, which should make both beginner and advanced users

feel comfortable.

Raspberry Pi OS14 is available in two flavors: 32 or 64 bit. For the book, we’re

standardizing the examples using the 64-bit version. If you’re running a

Raspberry Pi 5, Pi 4, or Pi Zero 2, we recommend using the 64-bit OS version.

For Raspberry Pi 3, you have to use the 32-bit version. In this case, all the

examples should work in a similar way but you need to change the target OS

from arm64 to arm when building your Go applications.

12. https://chicagodist.com/products/female-female-jumper-wires
13. https://chicagodist.com/collections/pimoroni/products/gpio-hammer-header-solderless-male-female-installation-

jig
14. https://www.raspberrypi.com/software/

Chapter 1. Getting Started • 8

report erratum • discuss

https://chicagodist.com/products/female-female-jumper-wires
https://chicagodist.com/collections/pimoroni/products/gpio-hammer-header-solderless-male-female-installation-jig
https://chicagodist.com/collections/pimoroni/products/gpio-hammer-header-solderless-male-female-installation-jig
https://www.raspberrypi.com/software/
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

You can find instructions on how to set up your Pi in the Getting Started with

Raspberry Pi15 webpage.

Go Programming Language

The projects in this book work with any version of Go 1.22 or higher. At the

time of writing this book, Go 1.22 is generally available.

Go supports cross compilation, allowing you to build an executable version

of your program using a different platform from the one running Go. So, you

don’t necessarily need to run Go on your Raspberry Pi to complete these

projects. Nevertheless, we wanted to provide the option of using Go in the

Raspberry Pi OS for the readers using that platform exclusively.

You’ll learn more about using Go on a different platform throughout the book’s

projects.

If you want to install and use a different Go version than the one shipped

with your device, or if you’re looking to install Go in a different operating

system, take a look at the Go Downloads16 webpage.

TinyGo

TinyGo17 is an alternative Go compiler for the Raspberry Pico and Pico W

microcontrollers. It is based on the LLVM18 toolchain that allows you to

compile Go code to run on microcontrollers like the Pi Pico. TinyGo compiles

your Go program with special options and optimizations, enabling it to run

on limited CPU power and RAM available with such small devices. It also

provides a package to interface with device-specific hardware such as IO pins.

For more information and installation instructions, consult the project’s Quick

Install Guide.19

Docker Community Edition

Docker20 is an open source container engine solution that allows you to

package and run applications in a self-contained bundle that includes all

required dependencies. Packaging your application in a Linux container pro-

vides a reliable and repeatable way to run applications on your Raspberry Pi.

15. https://www.raspberrypi.com/documentation/computers/getting-started.html
16. https://go.dev/dl/
17. https://tinygo.org/
18. https://llvm.org/
19. https://tinygo.org/getting-started/install/
20. https://www.docker.com/

report erratum • discuss

Configuring the Software • 9

https://www.raspberrypi.com/documentation/computers/getting-started.html
https://go.dev/dl/
https://tinygo.org/
https://llvm.org/
https://tinygo.org/getting-started/install/
https://www.docker.com/
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

In addition to including all dependencies, containers isolate applications from

each other, allowing you to run applications that would otherwise conflict

with each other, for example, applications that require different versions of

the same library or network ports.

To follow the projects featured in this book, you need Docker CE version 24.0

or higher. The version of Docker available in the standard package repository

of your Raspberry Pi OS is a bit older, so we recommend installing the latest

version using the official Docker repository.21 First, add Docker’s GPG key

used to verify the software signature:

$ sudo apt update
$ sudo apt install ca-certificates curl gnupg
$ sudo install -m 0755 -d /etc/apt/keyrings
$ curl -fsSL https://download.docker.com/linux/debian/gpg | \

sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg
$ sudo chmod a+r /etc/apt/keyrings/docker.gpg

Then, add the Docker repository to apt source list:

$ echo \
"deb [arch=$(dpkg --print-architecture) \
signed-by=/etc/apt/keyrings/docker.gpg] \
https://download.docker.com/linux/debian \
$(. /etc/os-release && echo "$VERSION_CODENAME") stable" | \
sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

$ sudo apt update

Finally, install Docker and its dependencies using apt:

$ sudo apt install docker-ce docker-ce-cli containerd.io \
docker-buildx-plugin docker-compose-plugin

The installation process starts the Docker daemon automatically. You can

verify that it’s running with the command systemctl:

$ sudo systemctl status docker

Then, add your current user to the docker group to run docker commands

without sudo:

$ sudo usermod -aG docker ${USER}

Finally, log out, then log back in and run docker version to ensure Docker is

running and your user can run commands:

21. https://docs.docker.com/engine/install/debian/

Chapter 1. Getting Started • 10

report erratum • discuss

https://docs.docker.com/engine/install/debian/
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

$ docker version
Client: Docker Engine - Community
Version: 24.0.7

...

Server: Docker Engine - Community
Engine:
Version: 24.0.7

If you’re using a 32-bit version of Raspberry Pi OS, then follow the instructions

available in Docker’s documentation.22

Docker Compose

Docker Compose23 is a plugin for Docker that provides a relatively easy way to

run multi-container applications in a single environment. For example, you can

use Compose to run a blog application that depends on two containers, a web

server and a database. Compose defines the required containers, storage, and

network on a single yaml file, and manages the application life cycle by issuing

the necessary Docker commands to start and stop the application containers.

The Docker CE package you installed already includes Docker Compose as

a standard plugin, but the version of Docker available on Raspberry Pi OS

repository does not. The examples in this book use version 2 of Docker

Compose included in Docker CE. Make sure you’re running this version:

$ docker compose version
Docker Compose version v2.21.0

In addition to the software, you also need a way to type your Go programs.

Picking a Code Editor

If you’re already familiar with or using a text editor for other purposes, you

could use it to program Go as well, since Go source files are regular plain

text files. However, some text editors integrate well with the Go tooling,

providing a better code experience with support for syntax checking and

code auto-suggestion. We recommend one of these two options:

• Neovim24 for a lightweight, terminal-based experience that runs well on

any hardware, including a headless Raspberry Pi.

22. https://docs.docker.com/engine/install/raspberry-pi-os/#install-using-the-repository
23. https://docs.docker.com/compose/
24. https://neovim.io/

report erratum • discuss

Picking a Code Editor • 11

https://docs.docker.com/engine/install/raspberry-pi-os/#install-using-the-repository
https://docs.docker.com/compose/
https://neovim.io/
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

• Visual Studio Code25 (or one of its open source alternatives) for a graphical

experience with many out-of-the-box features.

Neovim comes with basic syntax highlighting available for Go, but to enable

more advanced features, you need to install a plugin. We recommend go.nvim26

which provides full integration with the Go tooling, and a comprehensive set

of features for a complete development experience on your terminal. Go.nvim

requires some additional plugin dependencies, as well as Go tools. For more

details, consult the plugin installation instructions.27

When the plugin is installed, install the Treesitter parser for Go, by running

the command :TSInstallSync go in Neovim:

Downloading tree-sitter-go...
Creating temporary directory
Extracting tree-sitter-go...
Compiling...
Treesitter parser for go has been installed

Then, ensure you have all the required Go tooling by executing the command

:GoUpdateBinaries in Neovim and waiting for the install to complete:

install github.com/fatih/gomodifytags@latest finished
install github.com/abenz1267/gomvp@latest finished
install github.com/kyoh86/richgo@latest finished
install github.com/josharian/impl@latest finished
install mvdan.cc/gofumpt@latest finished
install github.com/tmc/json-to-struct@latest finished
install github.com/koron/iferr@latest finished
install github.com/segmentio/golines@latest finished
install github.com/golang/mock/mockgen@latest finished
install github.com/davidrjenni/reftools/cmd/fillswitch@latest finished
install github.com/cweill/gotests/...@latest finished
install github.com/davidrjenni/reftools/cmd/fillstruct@latest finished
install github.com/abice/go-enum@latest finished
install golang.org/x/vuln/cmd/govulncheck@latest finished
install github.com/onsi/ginkgo/v2/ginkgo@latest finished
install gotest.tools/gotestsum@latest finished
install github.com/go-delve/delve/cmd/dlv@latest finished
install github.com/golangci/golangci-lint/cmd/golangci-lint@latest finished
install golang.org/x/tools/gopls@latest finished
install golang.org/x/tools/cmd/callgraph@latest finished
install golang.org/x/tools/cmd/guru@latest finished
install golang.org/x/tools/cmd/gorename@latest finished
install golang.org/x/tools/cmd/goimports@latest finished

25. https://code.visualstudio.com/
26. https://github.com/ray-x/go.nvim
27. https://github.com/ray-x/go.nvim#installation

Chapter 1. Getting Started • 12

report erratum • discuss

https://code.visualstudio.com/
https://github.com/ray-x/go.nvim
https://github.com/ray-x/go.nvim#installation
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Now you can use Neovim to develop your Go programs.

To enable Go syntax highlight and code auto-completion in Visual Studio

Code, install the official VSCode Go extension,28 as shown in the following

image, and restart VSCode.

Once the extension is installed, install the required Go tooling from VSCode

by pressing Ctrl+Shift+p to open the Command Pallet and run the command

Go: Install/Update Tools. Select all suggested tools and wait for the install to com-

plete. You can see the following command output in the OUTPUT window:

Tools environment: GOPATH=/home/ricardo/go
Installing 7 tools at /home/ricardo/go/bin in module mode.

gotests
gomodifytags
impl
goplay
dlv
staticcheck
gopls

Installing github.com/cweill/gotests/gotests@latest SUCCEEDED
Installing github.com/fatih/gomodifytags@latest SUCCEEDED
Installing github.com/josharian/impl@latest SUCCEEDED
Installing github.com/haya14busa/goplay/cmd/goplay@latest SUCCEEDED
Installing github.com/go-delve/delve/cmd/dlv@latest SUCCEEDED
Installing honnef.co/go/tools/cmd/staticcheck@latest SUCCEEDED
Installing golang.org/x/tools/gopls@latest SUCCEEDED

All tools successfully installed. You are ready to Go. :)

Once all Go tools are installed, you’re ready to use VSCode to develop Go

programs.

28. https://marketplace.visualstudio.com/items?itemName=golang.go

report erratum • discuss

Picking a Code Editor • 13

https://marketplace.visualstudio.com/items?itemName=golang.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Now that you have all the prerequisites in place, and a code editor configured,

you’re ready to start developing home automation projects in Go.

Next Steps

In this chapter, we reviewed all the hardware and software required to work

on the projects featured in this book. You selected a Raspberry Pi device and

analyzed all hardware components required by the different projects. You

learned about the required Raspberry Pi operating system and Go versions.

Finally, you also installed Docker and Docker Compose on your Raspberry

Pi, and configured a code editor to develop Go code.

In Chapter 3, Deploying Your Personal Data Center, on page 25, you’ll set up

additional software infrastructure to support your projects. These additional

pieces of software enable you to manage source code, perform monitoring

and alerting, and visualize data.

But first, in the next chapter, we’ll use Go to build a REST API server to pass

messages and states between the different components in your home

automation projects.

Chapter 1. Getting Started • 14

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

CHAPTER 2

Building a REST API Server

A primary technology standard that we’ll call upon in several of the

projects featured in this book is Representational State Transfer, better

known as REST. Rather than re-inventing the wheel when it comes to

passing state from one machine to another, we can use a robust mecha-

nism that works just as effectively in small projects as it will in top-tier

enterprise applications.

REST packages information into JavaScript Notation, or JSON, format and

transfers those details using standard HTTP protocol. It’s one of the most

prevalent ways to transfer meaningful information from one machine to

another and it’s popular with both consumer and enterprise web applications.

In this chapter, we’ll create a simple REST server that will provide the foun-

dation for our Raspberry Pi to send and receive state changes. These can

range from transmitting the values of a sensor to receiving the results of an

executed command. This detail of communication will allow us to build

sophisticated and robust workflows that can be monitored and triggered from

a variety of REST-aware tools. We’ll use some of these tools to test the REST

server once we have it up and running.

After writing the code to execute the server, we will package the server into

an application container. Doing so allows for easy deployment and robust

uptime, since the container will automatically restart the server in the

event of a crash or reboot. These will be the same steps we will use to

deploy the applications throughout the book into our Raspberry Pi server

environment.

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Writing the Code

While we could use any of the popular web application frameworks created

by the Go community, such as Gin1 or Fiber,2 Go’s built-in libraries have all

the functions we need to build a lightweight REST API server. Taking this

approach greatly reduces the number of external library dependencies required

to run our server and significantly reduces the system resources required to

run the server. And for those security-conscious readers, this design decision

also reduces the potential attack surface by limiting the number of potentially

exposed unnecessary features that will be compiled into the deployable exe-

cutable. This bulk reduction will come in especially handy when we package

and execute the server within an application container.

Start a new Go project by creating a directory called restapi and issuing the

following Go command within that directory:

$ go mod init gohome/restapi

Next, using your preferred editor, create a new file within the restapi directory

called main.go and begin by importing the built-in packages we’ll use to create

the REST API server.

package main

import (
"encoding/json"
"fmt"
"net/http"
"os"
"os/exec"

)

The JSON encoding library will be used to process inbound data and format

outbound JSON outputs. The fmt standard library formats string output. The

HTTP library is used to manage our HTTP server connection. The os/exec

library allows Go to call other applications installed on the machine.

Now create a custom Go type called cmdresult using a struct keyword to

instruct Go how to format the JSON being emitted from a REST endpoint.

type cmdresult struct {
Success bool `json:"success"`
Message string `json:"message"`

}

1. https://gin-gonic.com
2. https://gofiber.io

Chapter 2. Building a REST API Server • 16

report erratum • discuss

https://gin-gonic.com
https://gofiber.io
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

This JSON structure contains two attributes, Success and Message, indicating

whether or not the function call was successful and any specific message to

be transmitted as part of that success result.

Next up, create a function to respond when the root level of the server path

is called from a browser. While not essential, having this kind of function

offers a quick sanity check to see if the server is up and running.

func homepage(write http.ResponseWriter, _ *http.Request) {
fmt.Fprintf(write, "Go Home Simple REST API Server")

}

Next, create the primary function to handle an inbound request that will query and

return the server’s current date, transmitted in our defined JSON-formatted

response. This is an example of how to use a system command to obtain information

you can return in a RESTful way. Later in the book, you can use a similar approach

to run other commands, such as the command to activate the Raspberry Pi camera.

func getdate(write http.ResponseWriter, _ *http.Request) {
result := cmdresult{}

out, err := exec.Command("date").Output()
if err == nil {

result.Success = true
result.Message = "The date is " + string(out)

}

json.NewEncoder(write).Encode(result)
}

Declare the result variable and initialize it to an empty cmdresult struct. Then, using

the exec.Command function from the os/exec package, call the external date program

and capture its output. If this call succeeds, set the Success boolean attribute

value of result to true and the Message to a sentence containing the command output.

Otherwise, these attributes remain with the zero values of false and empty string.

Then encode the result struct to JSON and return the result via HTTP to the caller.

Lastly, initialize the HTTP server, set the port number and declare the relative

paths that will be used to call the respective homepage and getdate functions.

func main() {
http.HandleFunc("/", homepage)
http.HandleFunc("/api/v1/getdate", getdate)
err := http.ListenAndServe(":4000", nil)
if err != nil {

fmt.Println("Failed to start server:", err)
os.Exit(1)

}
}

report erratum • discuss

Writing the Code • 17

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Save this main.go file and run the server via the go run command.

$ go run main.go

If there are no syntax errors, the server should be running and listening

on port 4000 for an inbound connection. Open your preferred browser and

type in the IP address of the machine you are running this REST API

server on, followed by the port number. For example, if you are running

the browser on the same host that is running the server, enter http://local-
host:4000. If the server is running and functioning correctly, you should see

“Go Home Simple REST API Server” in your browser window. Verify that

the getdate functionality is working correctly by entering its relative path

into the browser, such as http://localhost:4000/api/v1/getdate. If successful, the

browser window should display the success state and the date string in

JSON-formatted syntax.

{"success":true,"message":"The date is Sat Dec 2 10:25:31 AM EST 2023"}

Congratulations! You have built the first building block of an important service

that will allow your servers to communicate with one another in a standard

fashion. Now let’s package it into an application container, trimming it down

to its most lightweight core essentials.

Containing the Server

Now that your API server is ready, you can run it on your Raspberry Pi.

Because Go is a compiled language, you could compile and run it di2ctly

on the operating system. However, to increase the deployment flexibility,

let’s package the API server into an application container. A container

allows you to package an application with all of its dependencies, and to

run them in isolation from other system processes. By doing this, you

can run multiple instances of your application, or other applications on

the same machine, even if they have conflicting dependencies or

requirements, such as TCP ports.

Running the application as a container also allows you to take advantage of

some features the Docker container engine provides. One such feature auto-

matically restarts the container in case of failures or system restart. This

ensures that your Raspberry Pi Linux operating system keeps the contained

server always up and running automatically.

Before you can package your application in a container, you need to compile

it. Let’s do that next.

Chapter 2. Building a REST API Server • 18

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Compiling Your API Server

Running your Go application by using the command go run is a nice and quick

way to verify if your application is working. It’s particularly useful during

development time, but to run it in a production environment, you need to

compile your application into a binary file.

In Go, the compilation process is also known as “building” and you run it by

using the command go build. In its most basic form, running go build builds your

application into a single binary file compatible with your current operating

system and architecture. It also dynamically links your application to the

current system libraries. This is usually enough to run the application on

your machine. However, using this approach isn’t the best way to run a Go

application inside a container.

When building your Go application, you can specify additional environment

variables or parameters to customize the build and optimize the resulting

binary. Let’s look at some common environment variables:

• GOOS: Defines the target operating system for the build. Defaults to the

current operating system. Go allows cross compilation, which means you

can compile your Go application for a different operating system from

your current system. To build the API server binary to run in a Linux

container, set this variable to “linux”.

• GOARCH: Defines the target processor architecture for the build. Defaults

to the CPU architecture of the system running the build. To build your

API server binary to run on Raspberry Pi, set this variable to “arm64”.

• CGO_ENABLED: Defines whether or not the resulting binary dynamically links

to the system libraries. To build a static binary to run in a container, set

it to “0” (zero).

You can see all possible combinations of operating system and architecture

to use with GOOS and GOARCH by running go tool dist list.

In addition to variables, you can also pass additional parameters to go build.
To optimize your binary to run in a container and decrease its size, pass the

link parameter -ldflags set to -s -w to strip the resulting binary of all debugging

symbols. You can learn more about additional build options by running go
help build.

Build your API server binary with all these options by running go build like this:

$ CGO_ENABLED=0 GOOS=linux GOARCH=arm64 go build -ldflags="-s -w"

report erratum • discuss

Containing the Server • 19

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

This command creates a binary file, restapi. Use the Linux command file on it,

to verify build details:

$ file restapi
restapi: ELF 64-bit LSB executable, ARM aarch64, version 1 (SYSV),

statically linked, Go BuildID=QSMA....CAxpj, stripped

Next, let’s create a container image to allow your API server to run as a

container.

Creating a Container Image for Your Server

To run your API server as a container, you must first create a container image

for it. A container image packages your server application with required

dependencies using a standard format, supported by different container

engines such as Docker or Podman.

If you haven’t done so, follow the instructions on Docker Community Edition,

on page 9, to install Docker on your Raspberry Pi.

Then, specify the instructions on how to build the image in a configuration

file named Dockerfile. This file works as a recipe with all the steps needed to

create a container image.

Since you have your API server binary pre-compiled, you could use it to

create the container image. However, to make the process reproducible, let’s

create a multi-stage Dockerfile, where the first stage uses the official Go image

to build the server binary, and the second stage generates the final image to

run your server. By applying this technique, you can rerun the container

build process to build the binary and create the image when you modify or

update your code, avoiding a manual recompilation. Define your multi-stage

Dockerfile like this:

FROM docker.io/golang:1.22 AS builder
RUN mkdir /app
WORKDIR /app
COPY . /app
RUN CGO_ENABLED=0 GOOS=linux GOARCH=arm64 go build -ldflags="-s -w"

FROM docker.io/alpine:latest
RUN mkdir /app && adduser -h /app -D restapi
WORKDIR /app
COPY --chown=restapi --from=builder /app/restapi .
EXPOSE 4000
CMD ["/app/restapi"]

Chapter 2. Building a REST API Server • 20

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Another advantage of running a multi-stage build is that it allows you to use

a Go base image to build the application with a different version from the one

installed on your system. For example, when we were writing this book,

Raspberry Pi OS was packaging Go version 1.19, while we specified a more

recent version of Go, 1.22, in the Dockerfile used to build the server for the

container.

Save this file with the name Dockerfile and build your server image by using

the docker build command. Tag your image with the identifier “restapi:v1” using

option -t. Use a period . at the end to define the current directory with the

Dockerfile as the build context:

$ docker build -t restapi:v1 .

This command builds the image by following the steps defined in Dockerfile,

downloading any required images, building the server, and finally creating

the API server image by copying the server binary in a base Alpine Linux

image. When the command finishes building the image, you can see it by

listing locally known images using the command docker images:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
restapi v1 a00767dd3fa8 About a minute ago 12.2MB
golang 1.22 4c88d2e04e7d 11 days ago 851MB
alpine latest 5053b247d78b 5 weeks ago 7.66MB

Test your image by running your REST API server container with docker run.
Use option -d to run it as a background service, and -p 4000:4000 to expose port

4000 for external connection:

$ docker run -d -p 4000:4000 --name restapi-v1 restapi:v1
57c165d15840fb7bcf79989a1faf0cc1e9fcaf1ac7da823b62e36d8792ff23f8

Verify your container is running with docker ps:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES
f68e611b5be7 restapi:v1 "/app/restapi" 37 seconds ago Up 35 seconds

0.0.0.0:4000->4000/tcp restapi-v1

Finally, verify that it works by submitting a request using curl:

$ curl http://localhost:4000/api/v1/getdate
{"success":true,"message":"The date is Sat Dec 2 14:29:23 UTC 2023\n"}

Now that you have a working container image, let’s ensure the container is

always running.

report erratum • discuss

Containing the Server • 21

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Running Your Server Container as a Service

The final step in deploying this container is to have it automatically start up

when your Raspberry Pi powers on. This ensures that the server is always

up, since the service will automatically restart the server if it stops or crashes.

You can do this in different ways, such as creating a script or running helper

programs such as supervisor. These alternatives require additional maintenance.

Docker provides the parameter --restart for the docker run commands that allows

you to control the container restart behavior. Docker documentation does

not recommend using a process manager such as Systemd to manage con-

tainers.3 For this book’s projects, we’ll use the recommended approach by

specifying the parameter --restart=always to always restart the container in case

of failures or system restarts.

First, stop and delete the running restapi container if it’s running:

$ docker kill restapi-v1 && docker rm restapi-v1
restapi-v1
restapi-v1

Then, rerun the container specifying the parameter --restart=always:

$ docker run -d -p 4000:4000 --name restapi-v1 --restart=always restapi:v1
ddcb3253ca5218c9e00e13fd9bfc4d2cf8816bf216eb686dab628547c39463f8

Verify the correct restart policy is set by using docker inspect:

$ docker inspect restapi-v1 --format="{{.HostConfig.RestartPolicy}}"
{always 0}

You can also restart your Raspberry Pi to ensure the service comes up auto-

matically when the system starts.

If you’re using the Podman container engine, you can also create a Systemd

unit file using podman generate.

Congratulations, you have a running API server that restarts automatically in

case of issues and starts automatically every time you start your Raspberry Pi.

Next Steps

With a basic REST server up and running, you now have a way to receive and

send messages to our base Pi server in a reliable, standardized way. You’ve

seen how to compile this Go server and package it into a container for Docker

to manage. We also used Docker restart options to ensure this container will

automatically start whenever the Raspberry Pi hosting it boots up.

3. https://docs.docker.com/config/containers/start-containers-automatically/

Chapter 2. Building a REST API Server • 22

report erratum • discuss

https://docs.docker.com/config/containers/start-containers-automatically/
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

With this foundation, we’ll build the other projects in this book using a similar

approach. After the Go code for a project has been compiled and the resulting

executable packaged into a container, we’ll deploy and run the project in the

same way we did for this REST server.

In the next chapter, you’ll learn more about Go-based tools that make appli-

cation service monitoring and visualization easier. This will culminate in a

condensed version of a data center that fits within the confines of a Raspberry

Pi’s system resources while still giving us plenty of room to run our custom

projects. See you there!

report erratum • discuss

Next Steps • 23

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

CHAPTER 3

Deploying Your Personal Data Center

Now that you have our application requirements in place and deployed our

Go REST API server, you can complete the environment setup by spinning

up a few more Go-based applications. These applications will help monitor

running services, visualize these results, and send alerts whenever these

metrics exceed defined thresholds that need attention. Essentially, you’ll build

a condensed version of a data center that fits within the confines of the

Raspberry Pi’s system resources while still giving you plenty of room to run

your custom projects.

You’ll accomplish this by deploying three additional pieces of software onto

the Pi: Gitea, Prometheus, and Grafana. These open source Go-coded tools

allow you to manage source code for your projects, collect metrics and alerts

on them, and display them in a nice dashboard. While typically used by

DevOps personnel in enterprise settings, the combination of Go’s leanness

and the containers’ encapsulated deployments make these three applications

available for you to run at home, even on low powered hardware like the

Raspberry Pi.

The goal of this chapter is to deploy all three of these applications onto a

single Raspberry Pi, allowing you to have all the IT infrastructure required

for the book’s projects in a single box. To ensure these applications do not

conflict with each other, as well as with other applications you may be running

on your Pi, we’ll encapsulate and deploy them as Linux containers.

Deploying Applications with Linux Containers

The concept of running applications in isolation from other workloads in a

single shared system is not new, and has existed in different operating systems

for many years. Solutions to address this requirement range from simply

running a process in a rooted environment—changing the root of the process’s

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

file system—to more advanced and fully isolated virtualized or system parti-

tioned environments. From the Linux kernel perspective, another application

isolation method has gained traction in the past ten years: Linux Containers.

Linux Containers allow you to run your applications in isolation from other

processes running on your system by applying two important Linux kernel

features:

Namespaces

Allows a process to see a subset of system resources as the entire system.

Cgroups

Permits the system to limit and assign hardware resources, such as CPU

and memory, to individual processes.

In conjunction with other tooling and container management solutions, such

as Docker or Podman, you can use containers to encapsulate an application

with all its required dependencies, and run it in isolation from other applica-

tions in your system. Running applications in containers prevents conflicts,

such as dependency clashes, and allows fine-grained assignment of system

resources to each individual application. Particularly, by using containers,

you can deploy all the infrastructure required for the book’s projects in a

single Raspberry Pi, which could be challenging otherwise.

To make it easier to deploy containerized applications in Linux, you can use a

container management solution, such as Docker or Podman. These solutions

are not required, but they make it easier to package applications into images, as

well as manage their life cycle by starting, stopping, managing logs, mounting

external volumes, and integrating networking into the containers. As discussed

in Docker Community Edition, on page 9, the examples in this book use

Docker as the container management solution. If you haven’t done so yet, it’s

a good idea to follow the instructions in that section to install Docker on your

Raspberry Pi.

You can deploy all the services featured in this chapter by using docker in a

similar way to how you executed your API server in Containing the Server, on

page 18. The main difference consists in using pre-defined container images

provided by the application developers, instead of creating your own images.

In the end, you can also run these containers as services, by following the

same procedure you used to create a service for your Go REST API in Running

Your Server Container as a Service, on page 22. It’s recommended that you

have this infrastructure always running even after your Pi reboots.

Chapter 3. Deploying Your Personal Data Center • 26

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

The applications featured in this chapter are slightly more complex than the

REST API server you developed in the previous chapter. These applications

may have additional dependencies such as a database, or rely on additional

networking or local storage to ensure it preserves data across restarts. To

manage all aspects of each application, you’ll use Docker Compose to configure

all required dependencies using a single yaml configuration file. Docker Com-

pose also allows managing the entire set of required components with a single

command that starts and stops the application components in the correct

order. If you haven’t done so, follow the instructions in Docker Compose, on

page 11 to install Docker Compose on your Raspberry Pi.

Let’s start by deploying a local Git front end, Gitea, to manage source code

for your projects, by using Docker Compose.

Managing Source Code with Gitea

Let’s start your IT infrastructure in a box by deploying a local Git web front

end and server to help you manage your project’s source code. While this is

not required to complete the projects, it’s a good idea to have a private place

to manage your source code. Gitea is a popular GitHub clone written in Go that,

in addition to managing your source code with Git, provides many of the

features available in GitHub such as recording issues, pull requests, and a

wiki so you can collaborate with others, as well as maintain documentation

together with your source code. It also allows pushing and pulling code using

both HTTP and SSH protocols. For more information, consult the project’s

documentation.1

The Gitea developers provide an official container image you can use to run

the server part as a container. In addition to that, Gitea requires a database

to store project data. It supports different types of databases such as Postgre-

SQL, MySQL, and SQLite. For this project, we’re using the official PostgreSQL

container image to run the database as a container.

To work properly, Gitea requires network connectivity to PostgreSQL database

using its standard communication port 5432. To ensure both containers can

talk to each other, you can run them using Docker Compose. By default, when

you run multiple containers as a “service,” Docker Compose creates a dedicated

Docker Network, allowing all containers to communicate with each other by

using their container name as the DNS name. You can also manage other

aspects of your containers such as volumes for data persistence, exposed

network ports, and environment variables.

1. https://docs.gitea.io/

report erratum • discuss

Managing Source Code with Gitea • 27

https://docs.gitea.io/
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

To run both containers required for Gitea, create a docker-compose definition

file like this:

infrabox/gitea/docker-compose.yml

version: '3'

services:
gitea:
image: docker.io/gitea/gitea:1.20.1
restart: always
volumes:

- "git_data:/data"
ports:
- 3000:3000
- 2222:22

environment:
DB_USER: gitea
DB_NAME: gitea
DB_PASSWD: gitea
DB_TYPE: postgres
DB_HOST: db:5432

db:
image: docker.io/postgres:15.3-alpine
restart: always
volumes:

- "db_data:/var/lib/postgresql/data"
expose:
- 5432

environment:
POSTGRES_PASSWORD: gitea
POSTGRES_USER: gitea
POSTGRES_DB: gitea

volumes:
git_data: {}
db_data: {}

In this configuration, notice that you’re using environment variables to con-

figure PostgreSQL as well as configuring Gitea to access the database. You’re

also using Docker volumes in both containers to persist data in case the

container restarts, as well as setting the containers to automatically restart

in case of failure or system restarts in the same way you did in Running Your

Server Container as a Service, on page 22.

Now, start the service by using the command docker compose up in the same

directory where you have the configuration file docker-compose.yml. Docker

Compose automatically looks for a file with this name and uses it for service

definition. If your file has a different name, use option -f to specify the file

name. Use the option -d to run the containers in detached mode:

Chapter 3. Deploying Your Personal Data Center • 28

report erratum • discuss

http://media.pragprog.com/titles/gohome/code/infrabox/gitea/docker-compose.yml
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

$ docker compose up -d
[+] Running 19/19
✔ db 8 layers 0B/0B Pulled 31.4s
✔ 8c6d1654570f Already exists 0.0s
✔ d285f268e220 Pull complete 0.4s
✔ a4388b4d68d1 Pull complete 0.7s
✔ 7f8d1bfa3d3b Pull complete 29.7s
✔ 94da97297dcb Pull complete 30.0s
✔ 8262b2843785 Pull complete 30.3s
✔ c368c6a56404 Pull complete 30.5s
✔ 60f35adbbf32 Pull complete 30.7s

✔ gitea 9 layers 0B/0B Pulled 31.0s
✔ 3920a99c0b41 Pull complete 11.5s
✔ ab329f515238 Pull complete 11.8s
✔ 65129cc9ce82 Pull complete 12.1s
✔ 73011ce1559c Pull complete 23.8s
✔ b58a6c8d293b Pull complete 24.6s
✔ 87ca5a77c65f Pull complete 24.9s
✔ 37a7bbf1d1c1 Pull complete 29.7s
✔ a9f0b5401d37 Pull complete 30.0s
✔ 85b16303d533 Pull complete 30.2s

[+] Running 4/4
✔ Volume "gitea_db_data" Created 0.0s
✔ Volume "gitea_git_data" Created 0.0s
✔ Container gitea-gitea-1 Started 6.2s
✔ Container gitea-db-1 Started 6.1s

Verify that both Gitea and PostgreSQL containers are running by using the

command docker compose ls. This command lists the running compose project

named gitea with two running containers as expected.

$ docker compose ls
NAME STATUS CONFIG FILES
gitea running(2) /home/ricardo/gitea/docker-compose.yaml

In the compose configuration file, you also exposed network ports 3000 for

Gitea web and 2222 for SSH access. Configure Gitea by accessing its web

interface on port 3000. Point your browser to the Raspberry Pi’s IP address

(or hostname) on port 3000 to access the initial configuration page, as shown

in the screenshot on page 30.

Most of the configuration is correctly set from the environment variables you

added to the compose configuration file. You need to adjust three properties

to ensure your Gitea server works:

• Server Domain: Set to your Pi’s hostname or IP address

• SSH Server Port: Set to 2222 to match the exposed container port

• Gitea Base URL: Update localhost with Pi’s hostname or IP address

report erratum • discuss

Managing Source Code with Gitea • 29

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Make the required configuration as shown in the next screen capture:

Chapter 3. Deploying Your Personal Data Center • 30

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Then, scroll to the bottom of the page, expand the “Administrator Account

Settings” section, and fill in the fields to create an administrator account to

manage your server. When you’re done, click the button “Install Gitea” to com-

plete the install, as indicated in the following screen capture:

When the installation is done, Gitea redirects you to its web interface and

you’re ready to use it, as shown in the next image:

report erratum • discuss

Managing Source Code with Gitea • 31

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

You can create your repositories from here and access Gitea using SSH on

port 2222.

Next, let’s set up a monitoring and alerting infrastructure using Prometheus.

Monitoring and Alerting with Prometheus

Some of the home automation projects featured in this book require monitoring

and alerting capabilities. For example, projects in Chapter 4, Networking a

Temperature Monitor, on page 45, provide data that’s best viewed when

plotted over time, while Chapter 6, Lighting the Weather, on page 93, requires

alerting capabilities. Instead of developing a custom solution to support these

applications only, let’s roll out an instance of Prometheus, a popular monitor-

ing and alerting solution, using containers on your Raspberry Pi.

Prometheus2 is a monitoring system and time-series database widely used to

monitor IT infrastructure, particularly container-based workloads. Prometheus

is developed using Go, and its flexibility and scalability allow it to capture a

variety of metrics, from small environments to large corporate data centers.

Prometheus works by “scraping”—or polling on a fixed scheduled basis—

systems for metrics and storing them in a time-series database. It offers a

powerful and fast query language to retrieve and evaluate this data for corre-

lation, visualization, and alerting.

The target-monitored systems provide metrics to Prometheus via “exporters.”

Prometheus ships several default exporters to monitor common infrastructure

such as operating systems and databases. It also provides libraries for different

programming languages to develop custom exporters for your applications.

Later, in Chapter 4, Networking a Temperature Monitor, on page 45, you’ll

use Prometheus’s Go libraries to develop a custom exporter for your temper-

ature monitoring application.

For now, let’s deploy the required Prometheus infrastructure to monitor your

applications using a container. Since Prometheus is commonly used to monitor

container workload, the project provides default container images to run the

different required components.

Unlike Gitea, the Prometheus server runs as a standalone container without

any dependencies so you don’t need to use Compose to deploy it. However,

we also want to deploy a second container running a default node-exporter to
collect and expose data from the Linux OS on your Raspberry Pi host. In this

2. https://prometheus.io/

Chapter 3. Deploying Your Personal Data Center • 32

report erratum • discuss

https://prometheus.io/
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

case, let’s use Docker Compose to manage both the Prometheus server and

the node exporter containers.

First, create a custom Prometheus configuration file. Most of these configura-

tions are standard, and you can find a sample file and detailed explanation

about this configuration in the project’s documentation page.3 By default,

your Prometheus instance will scrape the target system for metrics every fifteen

seconds. Change to a different value if you want it to be more or less aggres-

sive. In the scrape_configs section, you have the default configuration to collect

metrics from itself as job_name: prometheus.

By default, obtaining metrics from additional targets requires adding another

job to the configuration file for each new target and restarting Prometheus.

To make the task of adding new target systems slightly easier, we’re adding

a file-based service discover job named svc_discovery that automatically imports

configuration from files that match the specified rule every thirty seconds.

infrabox/prometheus/prometheus.yml

global:

scrape_interval: 15s
scrape_timeout: 10s
evaluation_interval: 15s

alerting:
alertmanagers:
- follow_redirects: true
enable_http2: true
scheme: http
timeout: 10s
api_version: v2
static_configs:
- targets: []

scrape_configs:
- job_name: prometheus

honor_timestamps: true
scrape_interval: 15s
scrape_timeout: 10s
metrics_path: /metrics
scheme: http
follow_redirects: true
enable_http2: true
static_configs:
- targets:
- localhost:9090

3. https://prometheus.io/docs/prometheus/latest/configuration/configuration/

report erratum • discuss

Monitoring and Alerting with Prometheus • 33

http://media.pragprog.com/titles/gohome/code/infrabox/prometheus/prometheus.yml
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

- job_name: svc_discovery
file_sd_configs:
- files:
- '/prometheus/sd_*.json'
- '/prometheus/sd_*.yml'
- '/prometheus/sd_*.yaml'
refresh_interval: 30s

When Prometheus runs with this configuration, you can add a new target

system by creating a job file whose name starts with sd_ and with a file

extension yaml or json, under the directory mapped to the Prometheus data

directory /prometheus. Prometheus reads these files and automatically adds the

job to its queue for scraping, without restarting.

Now, create the docker-compose.yml file to configure the Prometheus service with

the required containers:

infrabox/prometheus/docker-compose.yml

version: '3'

services:
prometheus:
image: quay.io/prometheus/prometheus:v2.45.0
restart: always
volumes:

- "prom_data:/prometheus"
- "./prometheus.yml:/etc/prometheus/prometheus.yml:ro"❶

ports:
- 9090:9090

networks:
- prom_net❷

extra_hosts:
- "rpi-host:192.168.38.1"❸

node:
image: quay.io/prometheus/node-exporter:v1.6.1
command:

- "--path.rootfs=/host"❹
pid: host❺
restart: always
volumes:

- "/:/host:ro,rslave"
expose:
- 9100

network_mode: host❻
volumes:

prom_data: {}

networks:
prom_net:
driver: bridge
ipam:❼

Chapter 3. Deploying Your Personal Data Center • 34

report erratum • discuss

http://media.pragprog.com/titles/gohome/code/infrabox/prometheus/docker-compose.yml
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

config:
- subnet: 192.168.38.0/24
gateway: 192.168.38.1

In this Compose configuration, you’re using these options, in addition to what

you did in Managing Source Code with Gitea, on page 27:

❶ Mount the configuration file you previously defined in the container.

❷ Use a custom network ‘prom_net‘ allowing extra configurations.

❸ Define an additional host ‘rpi-host‘ pointing to the ‘prom_net‘ gateway

which resolves to the host, allowing communication with the node con-

tainer running on the host network.

❹ Provide additional parameters to the command Docker runs when starting

the node container so it can use the host root file system.

❺ Use the host PID namespace so the Node exporter can monitor host pro-

cesses.

❻ The Node Exporter requires running on the host network instead of a

Bridge network so it can monitor the host.

❼ Configure a pre-defined IP range for the ‘prom_net‘ so containers on this

net can communicate with each other, but can also define a fixed host

name allowing containers to talk to the host network.

When the container is up and running, point your browser to your Pi’s host-

name or IP address and port 9090 to see Prometheus’s web interface, as

shown in the next screenshot:

report erratum • discuss

Monitoring and Alerting with Prometheus • 35

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Currently, there aren’t many metrics to see, as the only target Prometheus

is monitoring is itself. You can verify the list of target systems by clicking on

“Status->Targets” at the top of the screen, as in the following screenshot:

Even though the Node Exporter container is running, Prometheus is still

unaware of it. Let’s configure Prometheus to scrape it for metrics. By default,

the Node Exporter exposes metrics on port 9100. Since we’re using the host

network to run this container, you can get the metrics by querying the host inter-

face. In the Prometheus container, we mapped the host to the hostname rpi-
host. Thanks to the service discovery job you added to the Prometheus config-

uration, you can automatically configure Prometheus to obtain metrics by

creating file sd_node01.yml, which specifies the target configuration, then copying

this file to the exposed volume prom_data. Use the hostname rpi-host that you

added to Prometheus when starting the container to query the host interface

from within the container:

infrabox/prometheus/sd_node01.yml

- labels:

job: node01
targets:
- 'rpi-host:9100'

Use docker cp to copy the file to the required path, which will place it in the

exposed volume for persistence:

$ docker cp sd_node01.yml prometheus-prometheus-1:/prometheus

Wait a few seconds and refresh the Prometheus Targets page to see the new

target automatically included, as demonstrated in the screenshot on page 37.

Chapter 3. Deploying Your Personal Data Center • 36

report erratum • discuss

http://media.pragprog.com/titles/gohome/code/infrabox/prometheus/sd_node01.yml
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Navigate to “Graph” at the top menu, and type node in the search box to see

how many node metrics are now available. Select one, for example, node_load5,
to view the system load, and execute it to obtain the current value. Select the

“graph” tab to graph it over time, as show in the next screen capture:

report erratum • discuss

Monitoring and Alerting with Prometheus • 37

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Promethus is a great tool to collect, process, and store metrics. While it has

some graph capabilities built in, it’s not the best tool for data visualization.

Let’s improve that by deploying Grafana next.

Visualizing Data with Grafana

Grafana4 is an open source data visualization tool. Grafana is developed in

Go and it enables the creation of detailed dashboards to display data from

several applications, such as databases, and monitoring systems like

Prometheus.

Grafana allows users to install ready-to-go dashboards from JSON files, as

well as create their own dashboards in an interactive web user interface. You

can combine data from different sources in a single dashboard, navigate and

explore metrics, and generate alerts.

Run Grafana as a container on your Raspberry Pi using the same network

prometheus_prom_net you used for the Prometheus container in Monitoring and

Alerting with Prometheus, on page 32, which will make it easier to query

and obtain data from Prometheus later. Use option -p 3100:3000 to map port

3100 on the host to Grafana standard port 3000 in the container. This is

required since your Gitea container already uses host port 3000 and they

would conflict.

$ docker run -d \
--name=grafana01 \
--restart=always \
--net=prometheus_prom_net \
-p 3100:3000 \
docker.io/grafana/grafana-oss:9.5.6

Now point your browser to the Pi’s hostname or IP address on port 3100 to

access Grafana’s initial screen. Log in with the default user admin and password

admin. On your first login you’re required to update the admin’s password to

proceed. After you’re logged in, add a new data source to obtain data from

Prometheus, by navigating to “Administration -> Data sources” on the left

menu, as indicated in the screenshot on page 39.

Then click “Add data source” and select “Prometheus” from the list of available

data sources to add. Configure the target URL as http://prometheus:9090 to query

the Prometheus instance running on the local Pi via the prom_net network.

Click “Save & Test” to save and test the connection. You should see a message

saying Data source is working, confirming the connection is successful.

4. https://grafana.com/oss/grafana/

Chapter 3. Deploying Your Personal Data Center • 38

report erratum • discuss

https://grafana.com/oss/grafana/
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

From this point, you could start querying Prometheus’s metrics and build

your own dashboard. To get a head start, you can also use an open source

dashboard available on the Internet. Many options are available out there

but, as an example, let’s use an open source dashboard Node Exporter Full,5

which provides a comprehensive overview of your operating system’s metrics.

To import this dashboard into Grafana, first download the source JSON file

from the project’s page.6 Then, in Grafana, navigate to “Dashboards” and select

“Import” from the “New” dropdown menu, as shown in the next screenshot:

5. https://github.com/rfrail3/grafana-dashboards/blob/master/prometheus/node-exporter-full.json
6. https://github.com/rfrail3/grafana-dashboards/blob/master/prometheus/node-exporter-full.json

report erratum • discuss

Visualizing Data with Grafana • 39

https://github.com/rfrail3/grafana-dashboards/blob/master/prometheus/node-exporter-full.json
https://github.com/rfrail3/grafana-dashboards/blob/master/prometheus/node-exporter-full.json
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Then, upload the dashboard JSON file, select your Prometheus datasource

and click “Import” to complete the procedure. Grafana finishes importing the

dashboard and displays it on the screen with metrics coming from your

Prometheus data source, as shown in the next screen capture:

At this point, you can use your monitoring infrastructure with Prometheus

and Grafana to monitor the status and health of your Raspberry Pi data

center.

Next Steps

Your basic IT infrastructure is ready to use. Using containers, you can run

an entire data center’s worth of applications to support your future projects.

You can manage source code using Git with Gitea; you have a monitoring

infrastructure ready in Prometheus, and a professional data visualization

tool with Grafana. By using the node exporter and a pre-defined dashboard,

you’re already able to monitor your Raspberry Pi.

You’ll use this same infrastructure in the upcoming home automation projects,

using a similar approach you used to obtain monitoring data from your Pi.

The basic workflow consists of exporting data from your applications, config-

uring Prometheus to scrape the metrics, adding a dashboard in Grafana to

view the data, and potentially alerting on it.

Chapter 3. Deploying Your Personal Data Center • 40

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Now that you have your personal data center running on your Raspberry Pi,

you’re ready to develop automation and monitoring programs, and then deploy

them to this Infrastructure in a Box Pi hardware. In the next chapter, we’ll

do just that by building a temperature monitor to send alerts anytime it gets

too hot (or too cold) in a room, a freezer, or even outdoors on a deck or porch.

Let’s go!

report erratum • discuss

Next Steps • 41

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Part II

Projects

Now that you have met all the project hardware

and software requirements and have the infrastruc-

ture to keep your programs up and running, we’re

ready to begin building home automation solutions

that use the Go language to make the magic happen.

In the four fun projects in this part, you’ll explore

important concepts that you can use to design and

develop solutions for your own requirements: Tiny

Go, GPIO, APIs, and using Pi Camera.

CHAPTER 4

Networking a Temperature Monitor

Now that you have your IT Infrastructure in a Box configured and ready to

accept inbound data, you can begin building your first home automation

project: a networked temperature monitor. This project will use the Raspberry

Pi Pico W’s onboard temperature sensor to report the current ambient tem-

perature around the sensor. The Pico W will then communicate with the

Raspberry Pi that is running the Prometheus server that you set up previously

to poll a web server running on the Pico W. This web server will provide these

temperature values in both Celsius and Fahrenheit measurement metrics.

Project’s Hardware Requirements

This project requires these components:

• Raspberry Pi Pico W: The microcontroller with onboard Wi-Fi and a temperature

sensor to report ambient temperature.

• Raspberry Pi server: A Raspberry Pi 3, 4, or Zero 2 to run the Prometheus exporter

to scrape data from the Pico W.

For more details consult Selecting a Raspberry Pi, on page 6.

Once the sensor is calibrated and reporting its results via a REST-accessible

JSON payload, you can deploy the Pico W in a number of environments such

as a basement, a freezer, or even outdoors in order to obtain a reoccurring

series of temperature updates. The Raspberry Pi you set up with Prometheus

and Grafana in the previous chapter will reach out and poll the Pico W at set

intervals. The formatted JSON data obtained from the Pico W will then be con-

sumed by your Prometheus instance and visualized by your Grafana instance

on the Raspberry Pi server. By visualizing the data, it’ll be easy to spot trends

and changes in temperature, as well as assign alerts when defined thresholds

are exceeded. For example, you can configure Grafana to email you when your

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

freezer temperature goes higher than 0 degrees Celsius (32 degrees Fahrenheit).

That alert could save you from spoiling a lot of frozen food!

Remarkably, there’s also work currently underway to make a minimized ver-

sion of the Go language, called TinyGo1 that’s capable of running on the Pi

Pico W as well. At the time of writing this book, the Wi-Fi driver for the Pico W

is not officially available with TinyGo, but the development version cyw434392

is available. We’ll use this driver for the book’s project. When the driver is

officially integrated within TinyGo, the code will likely not change dramatically,

but the driver´s import path might change.

By the end of this chapter, you’ll understand how to work with the Pico W

device, and how to use TinyGo to develop Go programs that fit many micro-

controllers. These important skills will allow you to develop other projects

that use microcontrollers to handle hardware, connectivity, and logic in places

or circumstances where it’s harder to use larger, more power hungry, devices.

Now it’s time to roll up your sleeves, gather up the necessary hardware, and

start building the solution!

Understanding the Pico W Device

The Raspberry Pi Pico W is a Wi-Fi-enabled version of their popular Pico

microcontroller design. Unlike the Raspberry Pi which runs a full Linux

operating system and can be reached via a variety of network protocol connec-

tions, such as SSH, the Pico W is a microcontroller, and thus does not have

the storage, memory, or operating system capacity of a Linux distribution.

Instead, it’s designed to immediately start a runtime at power on, and execute

whatever program and script it’s instructed to do. The Pico W currently sup-

ports its own C++ libraries and a minimal variant of Go called TinyGo.3

We’ll take advantage of this wireless network-enabled Pico W version so that

it can be placed anywhere there’s a Wi-Fi signal it can associate with, and a

power supply it can connect to. However, because the Pico W is a microcon-

troller and not a full-blown Linux-based server, we have to do some additional

work to connect to and program for it.

The ideal development environment for a Pico W board is a desktop PC or

laptop running Linux, macOS, or Windows, and a USB to USB micro cable

to connect the Pico W to the computer. You can develop TinyGo programs

1. https://tinygo.org/
2. https://github.com/soypat/cyw43439
3. https://tinygo.org/

Chapter 4. Networking a Temperature Monitor • 46

report erratum • discuss

https://tinygo.org/
https://github.com/soypat/cyw43439
https://tinygo.org/
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

using your preferred IDE or text editor. When you’re done, you’ll use the tinygo
command-line application to compile your program into a UF2 firmware image
compatible with the Pico W. Install TinyGo on your development machine by

following the instructions on the official Quick Install Guide.4

To transfer this image to the Pico W device, you need to start the Pico W in

file transfer mode by holding down the white BOOTSEL button on the Pi Pico W

while plugging in a USB cable between the Pico W and your PC, as shown in

the next photo.

If successful, the PC should see the Pico W as a mountable USB drive, as

indicated in the following screen capture.

4. https://tinygo.org/getting-started/install/

report erratum • discuss

Understanding the Pico W Device • 47

https://tinygo.org/getting-started/install/
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Drag the freshly compiled UF2 file into the mounted Pico W’s USB drive. The

Pico W will automatically recognize this as a special file type by installing

the file and rebooting the Pico W (and thereby ejecting its mounted USB drive

in the process).

If everything goes well, your program will execute on the Pico W automatically.

You can use TinyGo’s monitor subcommand to monitor the Pico W serial

interface for logs to ensure the program is running.

Now that you understand how to develop and transfer Go programs to the Pi

Pico W, you can begin writing a REST server that will poll the Pico W’s onboard

temperature and report that value in both Celsius and Fahrenheit, formatted

in a JSON payload that can be consumed for further analysis. The values in

this JSON will be converted into Prometheus-friendly formatting using a Go

program that we’ll write to perform the polling and conversion. But first, we

need to get the temperature value off the Pico W’s onboard temperature sensor,

format it into JSON-friendly format, and have a simple HTTP server ready to

accept new connections and deliver the JSON payload.

Polling the Temperature

In addition to having an onboard LED that’s useful for visually indicating

events and key activities, the Pico W also has an onboard temperature sensor.

This sensor can be polled on a scheduled basis to determine the ambient

temperature in the environment where the Pico W is operating.

Because the temperature sensor is onboard, it’s close to the Pico W’s CPU

and other components, and the temperature sensor values may not be

entirely accurate since it’ll also sense any additional heat coming from the

Pico W’s electronics. This heat fluctuation can have a minor impact on mea-

suring the actual room temperature. However, even if the actual temperature

is slightly lower than what the onboard temperature sensor is recording, the

measurement should be good enough for our monitoring purposes. That said,

this should offset this increased value by estimating what to subtract from

the captured onboard temperature reading.

TinyGo provides an abstracted library named machine to interact with compo-

nents of different microcontroller devices. This abstraction makes it easier to

reuse code across different devices sharing common functionality. This library

also implements functions for features specific to some devices. For the Pico

W, machine implements the function ReadTemperature that performs a one-time

read of the internal temperature sensor and outputs a value in milli-celsius.

The following code snippet calculates both Celsius and Fahrenheit values

Chapter 4. Networking a Temperature Monitor • 48

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

depending on your reporting preference. Later, you’ll incorporate this snippet

into the larger Go web server application that will be created and deployed

onto the Pico W.

func getTemperature() *temp {
curTemp := machine.ReadTemperature()

return &temp{
TempC: float64(curTemp) / 1000,
TempF: ((float64(curTemp) / 1000) * 9 / 5) + 32,

}
}

Internally, the Raspberry Pi Pico W calculates the temperature by measuring

the voltage on the fifth channel of the ADC (Analog-Digital Converter) con-

troller. The function performs a conversion to output the value in milli-celsius.

func ReadTemperature() (millicelsius int32) {
if rp.ADC.CS.Get()&rp.ADC_CS_EN == 0 {

InitADC()
}

// Enable temperature sensor bias source
rp.ADC.CS.SetBits(rp.ADC_CS_TS_EN)

// T = 27 - (ADC_voltage - 0.706)/0.001721
return (27000<<16 - (int32(

adcTempSensor.getVoltage())-706<<16)*581) >> 16
}

You can find more details on how the temperature sensor works on the

Raspberry Pi Pico RP2040 datasheet.5

Now that you understand how to read the temperature, let’s connect the Pico

W to the Wi-Fi network.

Connecting the Pico W to Wi-Fi

To connect the Pico W to the Wi-Fi network using TinyGo, we’ll use the open

source driver developed by Patricio Whittingslow and Scott Feldman, and

available at the cyw43439 repository.6 In addition to the Wi-Fi driver, this

repository also provides example boilerplate code to set up the connection

and obtain an IP address automatically from the DHCP server. To use this

boilerplate code, we need to download this repository to input the Wi-Fi cre-

dentials to connect to the network.

5. https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
6. https://github.com/soypat/cyw43439

report erratum • discuss

Connecting the Pico W to Wi-Fi • 49

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://github.com/soypat/cyw43439
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Let’s start by creating a directory for this project:

$ mkdir -p tempmonitor/picoserver
$ cd tempmonitor

Then clone the cyw43439 repository in this directory using git:

$ git clone https://github.com/soypat/cyw43439

Next, switch to the cloned repository’s example/common directory and copy the

template credentials file into secrets.go:

$ cd cyw43439/examples/common
$ cp secrets.go.template secrets.go

Then, edit the secrets.go file and specify your Wi-Fi connection details:

// Copy this file to secrets.go and make local changes to set Wifi credentials
package common

const (
// Set your Wifi SSID and passphrase here
ssid = "youWifiSSID"
pass = "yourPassword"

)

Save and close this file. To ensure your program uses this version of the

package, with your Wi-Fi credentials, let’s ensure the Go module is correctly

set up. Switch into the directory where the picoserver will reside:

$ cd ../../../picoserver

Initialize a new Go module for your program:

$ go mod init picoserver
go: creating new go.mod: module picoserver

This command creates a new go.mod file but it has no dependencies yet. Let’s

add the Pico W Wi-Fi driver as a dependency:

$ go mod edit \
--require github.com/soypat/cyw43439@v0.0.0-20240321235513-d28d7f302509

Finally, update the dependency to use the local repository which contains

your Wi-Fi credentials:

$ go mod edit --replace=github.com/soypat/cyw43439=../cyw43439

This is the content of the go.mod file:

module picoserver

go 1.22.1

Chapter 4. Networking a Temperature Monitor • 50

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

require github.com/soypat/cyw43439 v0.0.0-20240321235513-d28d7f302509

replace github.com/soypat/cyw43439 => ../cyw43439

Now that you have the correct dependency and the Wi-Fi credentials set up,

let’s start coding the temperature server.

Creating the Pico W REST Server

With the program’s core components completed, there needs to be a way to

have the Prometheus server remotely poll the Pico W’s recorded temperature

measurements so these metrics can be visualized on the Grafana instance

that was set up previously. Doing so requires setting up a network connection

using the onboard Wi-Fi adapter, associating it with your preferred Wi-Fi

network’s SSID and related password, and finally creating a simple HTTP

server that will deliver the rounded celsius and fahrenheit values as a JSON

payload.

Start your program by adding the package definition and the import statement

to main.go:

tempmonitor/picoserver/main.go

package main

import (
"bufio"
"encoding/json"
"io"
"machine"
"net/netip"
"time"

"log/slog"

"github.com/soypat/cyw43439"
"github.com/soypat/cyw43439/examples/common"

"github.com/soypat/seqs/httpx"
"github.com/soypat/seqs/stacks"

)

For this program, you’re importing several external libraries including machine
which is TinyGo’s abstraction for the Pico W device, log/slog which is the new

standard library for structured logs, cyw43439 which contains the Pico W Wi-

Fi driver, and seqs/httpx and seqs/stacks that provide a TCP stack and HTTP

handling for the Pico W.

report erratum • discuss

Creating the Pico W REST Server • 51

http://media.pragprog.com/titles/gohome/code/tempmonitor/picoserver/main.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Next, define some constants that will be used to initialize the TCP stack:

tempmonitor/picoserver/main.go

const (
connTimeout = 3 * time.Second
maxconns = 3
tcpbufsize = 2030
hostname = "picotemp"
listenPort = 80

)

Then, define a new struct type that you’ll use to convert the temperature

obtained from the temperature sensor into JSON:

tempmonitor/picoserver/main.go

type temp struct {
TempC float64 `json:"tempC"`
TempF float64 `json:"tempF"`

}

Next, define a package scoped variable of type pointer to slog.Logger that will

serve as the default structured logger for the entire application. While using

packages scoped variables is not encouraged, it’s useful for a small device

like the Pico W where there could be memory limitations if using many loggers.

In addition, the new structured log type is a good choice here because it

minimizes memory allocations for logging:

tempmonitor/picoserver/main.go

var logger *slog.Logger

Use Go’s init function to initialize the default logger, redirecting the logging

output to the Pico W serial interface by using the machine.Serial type as the first

parameter. This will allow you to monitor applications logs later using the

tinygo monitor command:

tempmonitor/picoserver/main.go

func init() {
logger = slog.New(

slog.NewTextHandler(machine.Serial, &slog.HandlerOptions{
Level: slog.LevelInfo,

}))
}

Next, create a function to change the Pico W LED state. You’ll use this function

to enable the Pico W LED to show that the device is active and listening for

connections:

Chapter 4. Networking a Temperature Monitor • 52

report erratum • discuss

http://media.pragprog.com/titles/gohome/code/tempmonitor/picoserver/main.go
http://media.pragprog.com/titles/gohome/code/tempmonitor/picoserver/main.go
http://media.pragprog.com/titles/gohome/code/tempmonitor/picoserver/main.go
http://media.pragprog.com/titles/gohome/code/tempmonitor/picoserver/main.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

tempmonitor/picoserver/main.go

func changeLEDState(dev *cyw43439.Device, state bool) {
if err := dev.GPIOSet(0, state); err != nil {

logger.Error("failed to change LED state:",
slog.String("err", err.Error()))

}
}

Then use the cyw43439 Wi-Fi driver and the example code available in the

examples/common directory in the cyw43439 repository7 to define a function that

performs the Pico W Wi-Fi setup:

tempmonitor/picoserver/main.go

func setupDevice() (*stacks.PortStack, *cyw43439.Device) {
_, stack, dev, err := common.SetupWithDHCP(common.SetupConfig{

Hostname: hostname,
Logger: logger,
TCPPorts: 1,

})
if err != nil {

panic("setup DHCP:" + err.Error())
}

// Turn LED on
changeLEDState(dev, true)

return stack, dev
}

Next, use the seqs/stack package to define a function that listens to the incoming

TCP connection on port 80, as previously defined in the constant section:

tempmonitor/picoserver/main.go

func newListener(stack *stacks.PortStack) *stacks.TCPListener {
// Start TCP server.
listenAddr := netip.AddrPortFrom(stack.Addr(), listenPort)
listener, err := stacks.NewTCPListener(

stack, stacks.TCPListenerConfig{
MaxConnections: maxconns,
ConnTxBufSize: tcpbufsize,
ConnRxBufSize: tcpbufsize,

})
if err != nil {

panic("listener create:" + err.Error())
}
err = listener.StartListening(listenPort)
if err != nil {

panic("listener start:" + err.Error())
}

7. https://github.com/soypat/cyw43439/examples/common

report erratum • discuss

Creating the Pico W REST Server • 53

http://media.pragprog.com/titles/gohome/code/tempmonitor/picoserver/main.go
http://media.pragprog.com/titles/gohome/code/tempmonitor/picoserver/main.go
http://media.pragprog.com/titles/gohome/code/tempmonitor/picoserver/main.go
https://github.com/soypat/cyw43439/examples/common
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

logger.Info("listening",
slog.String("addr", "http://"+listenAddr.String()),

)

return listener
}

Add a function to blink the LED. You’ll use this function to provide visual

feedback when the Pico W server receives a connection request. This function

uses a Go channel, as it’ll run concurrently with other functions to avoid

blocking the program:

tempmonitor/picoserver/main.go

func blinkLED(dev *cyw43439.Device, blink chan uint) {
for {

select {
case n := <-blink:

lastLedState := true
if n == 0 {

n = 5
}
for i := uint(0); i < n; i++ {

lastLedState = !lastLedState
changeLEDState(dev, lastLedState)
time.Sleep(500 * time.Millisecond)

}
// Ensure LED is on at the end
changeLEDState(dev, true)

}
}

}

Then, add the function to obtain the temperature from the temperature sensor

and output the values in both Celsius and Fahrenheit using the temp custom

type you defined previously:

tempmonitor/picoserver/main.go

func getTemperature() *temp {
curTemp := machine.ReadTemperature()

return &temp{
TempC: float64(curTemp) / 1000,
TempF: ((float64(curTemp) / 1000) * 9 / 5) + 32,

}
}

Next, define the function HTTPHandler to handle the HTTP request for tempera-

ture. This function uses the seqs/httpx library to define HTTP headers for the

response. In the function body, obtain the temperature from the sensor using

Chapter 4. Networking a Temperature Monitor • 54

report erratum • discuss

http://media.pragprog.com/titles/gohome/code/tempmonitor/picoserver/main.go
http://media.pragprog.com/titles/gohome/code/tempmonitor/picoserver/main.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

getTemperature and convert it to JSON using the standard library enconding/json
package. In case of errors, return a 500 (Internal Server Error) response. In

case of success, return the JSON containing the temperature:

tempmonitor/picoserver/main.go

func HTTPHandler(respWriter io.Writer, resp *httpx.ResponseHeader) {
resp.SetConnectionClose()
logger.Info("Got temperature request...")
t := getTemperature()

body, err := json.Marshal(t)
if err != nil {

logger.Error(
"temperature json:",
slog.String("err", err.Error()),

)
resp.SetStatusCode(500)

} else {
resp.SetContentType("application/json")
resp.SetContentLength(len(body))

}
respWriter.Write(resp.Header())
respWriter.Write(body)

}

Write a function to handle HTTP connections and respond with the tempera-

ture JSON. Again, because this is a small device, define some buffer that can

be reused for all connections to avoid memory allocations. This function also

takes a channel as input. This channel notifies the blinkLED goroutine to blink

the Pico W LED, showing that it’s processing a connection:

tempmonitor/picoserver/main.go

func handleConnection(listener *stacks.TCPListener, blink chan uint) {
// Reuse the same buffers for each
// connection to avoid heap allocations.
var resp httpx.ResponseHeader
buf := bufio.NewReaderSize(nil, 1024)

for {
conn, err := listener.Accept()
if err != nil {

logger.Error(
"listener accept:",
slog.String("err", err.Error()),

)
time.Sleep(time.Second)
continue

}

report erratum • discuss

Creating the Pico W REST Server • 55

http://media.pragprog.com/titles/gohome/code/tempmonitor/picoserver/main.go
http://media.pragprog.com/titles/gohome/code/tempmonitor/picoserver/main.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

logger.Info(
"new connection",
slog.String("remote",

conn.RemoteAddr().String()),
)
err = conn.SetDeadline(time.Now().Add(connTimeout))
if err != nil {

conn.Close()
logger.Error(

"conn set deadline:",
slog.String("err", err.Error()),

)
continue

}
buf.Reset(conn)
resp.Reset()
HTTPHandler(conn, &resp)
conn.Close()

blink <- 5
}

}

Finally, put everything together in the main function that serves as the pro-

gram’s entry point:

tempmonitor/picoserver/main.go

func main() {
stack, dev := setupDevice()
listener := newListener(stack)

blink := make(chan uint, 3)
go blinkLED(dev, blink)
go handleConnection(listener, blink)

for {
select {
case <-time.After(1 * time.Minute):

logger.Info("Waiting for connections...")
}

}
}

The main function sets the Wi-Fi connection up, creates the TCP listener,

defines the blink channel to connect the blinkLED and handleConnection goroutines,

and starts both goroutines to process requests. In the end, it uses an infinite

loop with a blocking select statement to prevent the program from terminating

while the goroutines run in the background. It also sends a message every

minute to the log to show the program is still running.

Chapter 4. Networking a Temperature Monitor • 56

report erratum • discuss

http://media.pragprog.com/titles/gohome/code/tempmonitor/picoserver/main.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

While the Pico W does have a fast enough processor to keep up with simple

web server connection requests, it can become quickly overwhelmed with

many simultaneous requests, or by timing out while attempting to process a

very large JSON payload. However, because the two values being returned

are fairly small and lightweight, you shouldn’t encounter these limitations as

long as you don’t have more than one client calling upon this server once

every several seconds.

Save the main.go file and run gomod tidy to download the required dependencies:

$ go mod tidy

Now, use the tinygo command line to build your program:

$ tinygo build -target=pico -opt=1 -stack-size=8kb -size=short -o main.uf2 .
code data bss | flash ram

594516 16116 3440 | 610632 19556

Then copy the resulting uf2 file to your Pico W by dragging and dropping it to

the mounted device, or using the command line:

$ cp main.uf2 /mnt/RPI-RP2

The Pico W will restart automatically and start the program. Use tinygo monitor
to see the logs on the Pico W serial interface:

$ tinygo monitor
Connected to /dev/ttyACM0. Press Ctrl-C to exit.
time=1970-01-01T00:00:05.003Z level=INFO msg="wifi join success!"

mac=28:cd:c1:d1:c0:52
time=1970-01-01T00:00:05.006Z level=INFO msg="DHCP ongoing..."
time=1970-01-01T00:00:05.008Z level=INFO msg=DHCP:tx msg=Discover
time=1970-01-01T00:00:05.058Z level=INFO msg=DHCP:rx msg=Offer
time=1970-01-01T00:00:05.059Z level=INFO msg=DHCP:tx msg=Request
time=1970-01-01T00:00:05.061Z level=INFO msg=DHCP:rx msg=Offer
time=1970-01-01T00:00:05.109Z level=INFO msg=DHCP:rx msg=Offer
time=1970-01-01T00:00:05.160Z level=INFO msg=DHCP:rx msg=Offer
time=1970-01-01T00:00:05.211Z level=INFO msg=DHCP:rx msg=Ack
time=1970-01-01T00:00:05.262Z level=INFO msg=DHCP:rx msg=Ack
time=1970-01-01T00:00:05.507Z level=INFO msg="DHCP complete"

cidrbits=24 ourIP=192.168.30.180 dns=192.168.30.1
broadcast=192.168.30.255 gateway="invalid IP"
router=192.168.30.1 dhcp=192.168.30.1 hostname=picotemp
lease=24h0m0s renewal=12h0m0s rebinding=21h0m0s

time=1970-01-01T00:00:05.512Z level=INFO
msg=lst:freeConnForReuse lport=0 rport=0

time=1970-01-01T00:00:05.513Z level=INFO
msg=lst:freeConnForReuse lport=0 rport=0

time=1970-01-01T00:00:05.514Z level=INFO
msg=lst:freeConnForReuse lport=0 rport=0

report erratum • discuss

Creating the Pico W REST Server • 57

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

time=1970-01-01T00:00:05.515Z level=INFO
msg=listening addr=http://192.168.10.180:80

time=1970-01-01T00:00:16.403Z level=INFO
msg=TCP:rx-statechange port=80 old=Listen new=SynRcvd rxflags=[SYN]

time=1970-01-01T00:00:16.713Z level=INFO
time=1970-01-01T00:00:16.714Z level=INFO

msg="new connection" remote=192.168.30.122:59588
time=1970-01-01T00:00:16.715Z level=INFO msg="Got temperature request..."

The program may take several seconds to initialize and associate a network

connection with your wireless network. If successful, you should see a

printout of the IP address your router assigned to the Pico W. Then poll that

IP address using curl. For example, if your Pico W’s assigned IP address is

192.168.30.180, use curl http://192.168.30.180 like this:

$ curl http://192.168.30.180
{"tempC": 25.6, "tempF": 78.08}%

If you prefer, you can also use a browser or REST-specific API utilities, like

Postman8 on the Desktop and API Tester9 on mobile devices, to verify and

troubleshoot expected return results. However, since this is a simple read-

only GET request, using curl is more than adequate for our needs.

If your test is successful, you can take the next bold step of unplugging the

USB cable from your laptop and connecting it to a spare USB power supply.

Relocate the Pico W attached to this dedicated power source, and connect it

to any power outlet within range of your assigned SSID broadcast. Within a

minute or so, check to see if the IP is reachable via your web browser test

again. If the test fails, check the logs provided by running the tinygo monitor
command to understand the failure cause and address it. Ensure your Pico

W device is in range of your Wi-Fi router and the credentials are correct. If

you cannot see any logs, transfer your program to the Pico W again to ensure

it did not have any issues during the file transfer.

Now we’re ready to move on to the next phase of the project, building the

Prometheus exporter that will poll the Pico W’s assigned IP address every ten

seconds to capture the temperature data. Grafana will process the captured

data to visualize the ambient temperature around the Pico W.

Creating the Prometheus Exporter

Now that a hardware endpoint exists to query at any time, use that always-on

accessibility to your advantage by leveraging the power of the Prometheus

8. https://www.postman.com/
9. https://apitester.org/

Chapter 4. Networking a Temperature Monitor • 58

report erratum • discuss

https://www.postman.com/
https://apitester.org/
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

server you installed in the last chapter. Prometheus uses its own particular

naming conventions and formatting rules for indicating value names and

related assignments. As such, you’ll need to convert the JSON payload received

by the Pico W server into an exported format that Prometheus can consume.

Fortunately, this is a trivial process to create in Go because Prometheus itself

is written in Go.

This implementation, while not sophisticated, applies several of Prometheus

exporter development guidelines,10 ensuring it exports metrics according to

Prometheus’s conventions, and is safe for concurrent use.

Start by creating a directory for this project and switching to it:

$ mkdir -p gohome/picotempexport
$ cd gohome/picotempexport

Then initialize a new Go module for the project:

$ go mod init gohome/picotempexport

Now, create an HTML file to hold the template for the root page, redirecting

clients to the metrics page where they can obtain the metrics exported. Later,

you’ll use Go’s embed package to embed this file into the final binary.

tempmonitor/exporter/rootPage.html

<html>
<head>

<title>Pi Pico W Temperature Exporter</title>
</head>
<body>

<h1>Pi Pico W Temperature Exporter</h1>
<p>metrics</p>

</body>
</html>

Next, open your favorite Go editor and create a new file, picotempexport.go. Add

packagemain, followed by importing the native and third-party libraries needed.

These include the Prometheus-specific libraries.

tempmonitor/exporter/picotempexport.go

package main

import (
_ "embed"
"encoding/json"
"errors"
"fmt"
"log"

10. https://www.prometheus.io/docs/instrumenting/writing_exporters/

report erratum • discuss

Creating the Prometheus Exporter • 59

http://media.pragprog.com/titles/gohome/code/tempmonitor/exporter/rootPage.html
http://media.pragprog.com/titles/gohome/code/tempmonitor/exporter/picotempexport.go
https://www.prometheus.io/docs/instrumenting/writing_exporters/
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

"net/http"
"os"
"sync"
"time"

"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/client_golang/prometheus/promauto"
"github.com/prometheus/client_golang/prometheus/promhttp"

)

Now, use the embed module to embed the HTML content into the variable

rootPageHTML. The embed module works as a compiler directive that instructs

the compiler to create the variable defined in the next line, assigning its value

to the content of the embedded file:

tempmonitor/exporter/picotempexport.go

//go:embed rootPage.html
var rootPageHTML []byte

Then, create a variable encoding a custom error value errInvalidResponse that

indicates the Pico W server returned invalid content:

tempmonitor/exporter/picotempexport.go

var errInvalidResponse = errors.New("unexpected response from the server")

Next, create a struct to hold the Celsius and Fahrenheit values parsed from

the Pico W server’s JSON payload.

tempmonitor/exporter/picotempexport.go

type tempValues struct {
TempC float64 `json:"tempC"`
TempF float64 `json:"tempF"`

}

Now write the code for the getTempValues() method that will connect to the Pico

W server, make a request, receive the data, and then parse the JSON payload

into an instance of tempValues struct that you’ll use later to return metrics to

Prometheus:

tempmonitor/exporter/picotempexport.go

func (tv *tempValues) getTempValues(client *http.Client, url string) error {
response, err := client.Get(url)
if err != nil {

log.Println(err)
return err

}
defer response.Body.Close()

Chapter 4. Networking a Temperature Monitor • 60

report erratum • discuss

http://media.pragprog.com/titles/gohome/code/tempmonitor/exporter/picotempexport.go
http://media.pragprog.com/titles/gohome/code/tempmonitor/exporter/picotempexport.go
http://media.pragprog.com/titles/gohome/code/tempmonitor/exporter/picotempexport.go
http://media.pragprog.com/titles/gohome/code/tempmonitor/exporter/picotempexport.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

if response.StatusCode != http.StatusOK {
err := fmt.Errorf(

"%w: invalid status code: %s",
errInvalidResponse,
response.Status,

)
log.Println(err)
return err

}

if err := json.NewDecoder(response.Body).Decode(tv); err != nil {
log.Println(err)
return err

}
return nil

}

Next, define another type, metrics, to cache the metrics values before sending

the data to Prometheus. This new type accomplishes two important goals:

1. Defines a concurrency-safe model to access data in case more than one

instance of Prometheus requests them simultaneously.

2. Caches the values received from the Pico W server for two seconds, pre-

venting overloading the Pico W in case the exporter receives many concur-

rent requests.

The metrics struct includes an instance of struct tempValues to store the metrics

received from the Pico W server, and a field up that indicates when the Pico W

is up and running. It also includes an expire field representing a time when

the cache expires and it must obtain new values from the Pico W server.

Finally, it embeds type sync.RWMutex from the standard library sync, which allows

locking and unlocking the struct for safe concurrent access. Define the new

struct like this:

tempmonitor/exporter/picotempexport.go

type metrics struct {
results *tempValues
up float64
expire time.Time
sync.RWMutex

}

Then, associate a method getMetrics to the metrics type. This method returns

the existing values if the cache hasn’t expired, or if the cache has expired, it

uses the previously defined method getTempValues to obtain new temperature

values from the Pico W server:

report erratum • discuss

Creating the Prometheus Exporter • 61

http://media.pragprog.com/titles/gohome/code/tempmonitor/exporter/picotempexport.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

tempmonitor/exporter/picotempexport.go

func (m *metrics) getMetrics(client *http.Client, url string) *metrics {
m.Lock()
defer m.Unlock()

if time.Now().Before(m.expire) {
return m

}

m.up = 1
if err := m.results.getTempValues(client, url); err != nil {

m.up = 0
m.results.TempC = 0
m.results.TempF = 0

}

m.expire = time.Now().Add(2 * time.Second)

return m
}

Next, define a set of methods to access the metrics values in a concurrent

safe way, by locking the struct instance for reading before returning their

values, and unlocking it when it’s done:

tempmonitor/exporter/picotempexport.go

func (m *metrics) tempC() float64 {
m.RLock()
defer m.RUnlock()

return m.results.TempC
}

func (m *metrics) tempF() float64 {
m.RLock()
defer m.RUnlock()

return m.results.TempF
}

func (m *metrics) status() float64 {
m.RLock()
defer m.RUnlock()

return m.up
}

The Prometheus exporter exports metrics over an HTTP interface. You will

accomplish it by writing a small HTTP server using Go’s standard net/http and

Prometheus’s promhttp packages to expose metrics. First, create a new HTTP

requests multiplexer to handle incoming connections and dispatch them to the

appropriate handler. This function uses Prometheus’s package promauto to define

the three target metrics that you’re exposing in a Prometheus standard format:

Chapter 4. Networking a Temperature Monitor • 62

report erratum • discuss

http://media.pragprog.com/titles/gohome/code/tempmonitor/exporter/picotempexport.go
http://media.pragprog.com/titles/gohome/code/tempmonitor/exporter/picotempexport.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

tempmonitor/exporter/picotempexport.go

func newMux(url string) http.Handler {
mux := http.NewServeMux()

client := &http.Client{
Timeout: 10 * time.Second,

}

m := &metrics{
results: &tempValues{},

}

promauto.NewGaugeFunc(
prometheus.GaugeOpts{

Name: "pico_temperature",
Help: "Pico Sensor Temperature.",
ConstLabels: prometheus.Labels{"unit": "celsius"},

},
func() float64 {

return m.getMetrics(client, url).tempC()
},

)

promauto.NewGaugeFunc(
prometheus.GaugeOpts{

Name: "pico_temperature",
Help: "Pico Sensor Temperature.",
ConstLabels: prometheus.Labels{"unit": "fahrenheit"},

},
func() float64 {

return m.getMetrics(client, url).tempF()
},

)

promauto.NewGaugeFunc(
prometheus.GaugeOpts{

Name: "pico_up",
Help: "Pico Sensor Server Status.",

},
func() float64 {

return m.getMetrics(client, url).status()
},

)

mux.HandleFunc("/", func(w http.ResponseWriter, _ *http.Request) {
w.Write(rootPageHTML)

})

mux.Handle("/metrics", promhttp.Handler())

return mux
}

report erratum • discuss

Creating the Prometheus Exporter • 63

http://media.pragprog.com/titles/gohome/code/tempmonitor/exporter/picotempexport.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Note that Prometheus defaults to the /metrics absolute path when polling a

server if the endpoint isn’t explicitly defined. While not essential, it’s a good

practice to include a brief description of the endpoint at the root level of the

web server. This multiplexer encodes that practice by handling requests to

the server root / with a snippet of HTML that redirects to /metric.

Finally, create a main() function that provides an entry point to the program

and starts the HTTP server on port :3030 using the multiplexer you previously

defined. This function also captures the Pico W server URL using an environ-

ment variable enabling you to customize it when starting the program, and

a custom HTTP server object that defines some sensible timeouts to prevent

connections from hanging forever in case of issues. While this is not required

to develop a web server with Go, it’s a recommended practice. Define the main

function like this:

tempmonitor/exporter/picotempexport.go

func main() {
picoURL := os.Getenv("PICO_SERVER_URL")

s := &http.Server{
Addr: ":3030",
Handler: newMux(picoURL),
ReadTimeout: 10 * time.Second,
WriteTimeout: 10 * time.Second,

}

if err := s.ListenAndServe(); err != nil {
fmt.Fprintln(os.Stderr, err)
os.Exit(1)

}
}

With all the code in place, and the defined Pico W REST server up and running,

compile and run this Go Prometheus exporter using the typical go run com-

mand. Set the environment variable PICO_SERVER_URL to your Pico W server URL

to configure the server to obtain temperatures from your Pico W.

$ PICO_SERVER_URL=http://<PICO_IP_OR_HOSTNAME> go run picotempexport.go

Assuming no errors, you should be able to open a browser on your local machine

and visit http://localhost:3030 with your preferred web browser. If successful, you

should see something similar to the response in the next screenshot.

Chapter 4. Networking a Temperature Monitor • 64

report erratum • discuss

http://media.pragprog.com/titles/gohome/code/tempmonitor/exporter/picotempexport.go
http://localhost:3030
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Selecting the /metrics link on the page should show the Prometheus-formatted

results, including the defined pico_temperature with both Celsius and Fahrenheit

labels and associated values.

HELP pico_temperature Pico Sensor Temperature.
TYPE pico_temperature gauge
pico_temperature{unit="celsius"} 31
pico_temperature{unit="fahrenheit"} 87.8
HELP pico_up Pico Sensor Server Status.
TYPE pico_up gauge
pico_up 1

Congratulations! You just attained another milestone by converting the Pico

W onboard temperature values into a format that can be consumed by the

Prometheus server. But before you can configure the Prometheus server to

perform a scheduled polling of this exporter, you need to package it into a

container, and then deploy and run this container in Docker so you know

what URL to add to Prometheus’s polling configuration.

Containing and Deploying the Exporter

Now that you have a working exporter for your Pico W temperature sensor,

let’s create an image to run the exporter as a container in your Raspberry Pi

infrastructure, similar to what you did in Containing the Server, on page 18.

First, create a Dockerfile using the multi-stage approach to compile your Go

Prometheus exporter in the first stage, and create an image for it in the second

stage:

tempmonitor/exporter/Dockerfile

FROM docker.io/golang:1.22 AS builder
RUN mkdir /app
WORKDIR /app
COPY . /app
RUN CGO_ENABLED=0 GOOS=linux GOARCH=arm64 go build -ldflags="-s -w"

FROM docker.io/alpine:latest
RUN mkdir /app && adduser -h /app -D picotempexport
WORKDIR /app
COPY --chown=picotempexport --from=builder /app/picotempexport .
EXPOSE 3030
CMD ["/app/picotempexport"]

Then, build the image by using command docker build:

$ docker build -t picotempexport:v1 .

report erratum • discuss

Containing and Deploying the Exporter • 65

http://media.pragprog.com/titles/gohome/code/tempmonitor/exporter/Dockerfile
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Verify the command worked and built the image successfully by listing local

images on your Raspberry Pi:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
picotempexport v1 d1fc052c1ee0 12 seconds ago 13.8 MB

Test your image by running the export with docker. Set the environment variable

PICO_SERVER_URL to your Pico W server IP or hostname, and expose port 3030 for

external connection. Use --restart=always to ensure the container starts automat-

ically on system startup. Attach the container to the Prometheus server net-

work prometheus_prom_net so Prometheus can scrape this container for metrics:

$ docker run -d \
--name picotempexport-v1 \
-p 3030:3030 \
--env PICO_SERVER_URL=http://<PICO_IP_OR_HOSTNAME> \
--restart=always \
--net=prometheus_prom_net \
picotempexport:v1

Now, verify the container is running, using docker ps -l to list the last container

created:

$ docker ps -l
CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES
e30d7e6e64d6 picotempexport:v1 /app/picotempexpo... About a minute ago

Up About a minute ago 0.0.0.0:3030->3030/tcp picotempexport-v1

You can also test your exporter by using curl to query metrics on the exposed

port 3030:

$ curl -s http://localhost:3030/metrics | grep pico
HELP pico_temperature Pico Sensor Temperature.
TYPE pico_temperature gauge
pico_temperature{unit="celsius"} 59
pico_temperature{unit="fahrenheit"} 138.2
HELP pico_up Pico Sensor Server Status.
TYPE pico_up gauge
pico_up 1

Your Prometheus exporter is ready and exporting temperatures collected from

the Pico W. In the next step, you’ll configure Prometheus to scrape these

metrics.

Configuring Prometheus to Query the Exporter

Thanks to the service discovery job you implemented with your Prometheus

configuration, you can use the same approach you used in Monitoring and

Chapter 4. Networking a Temperature Monitor • 66

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Alerting with Prometheus, on page 32, to scrape metrics from the Node

exporter, to configure your custom exporter. Since the custom exporter con-

tainer is running on the same Raspberry Pi where Prometheus service runs

and you attached it to the same network prometheus_prom_net, you can use the

container name picotempexport-v1 3030 to obtain the metrics:

tempmonitor/prometheus/sd_picotempexporter.yml

- labels:

job: picotempexport
targets:
- 'picotempexport-v1:3030'

Then, use the command docker cp to copy the service discovery file to the

Prometheus container:

$ docker cp sd_picotempexporter.yml prometheus-prometheus-1:/prometheus

Wait a few seconds and refresh the Prometheus Targets page to see the new

target automatically included, as demonstrated in the next screenshot:

Finally, navigate to the Graph tab and select pico_temperature metric to view cur-

rent values in Celsius and Fahrenheit. You can also add a label {unit="celsius"}
to display metrics in one of the units only. Select the Graph sub tab to view

the temperature variation over time, as shown in the screenshot on page 68.

You have successfully configured your Prometheus environment to collect

metrics from your Pico W. In the next step, you’ll use Grafana to create a nice

temperature-over-time display.

report erratum • discuss

Containing and Deploying the Exporter • 67

http://media.pragprog.com/titles/gohome/code/tempmonitor/prometheus/sd_picotempexporter.yml
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Creating the Grafana Dashboard

Assuming you already have a running Grafana instance from Visualizing Data

with Grafana, on page 38, you already have Grafana set up to pull data from

the Prometheus server that you just configured. This makes it easy to create

a new Grafana dashboard, add a panel to that dashboard, and set the panel’s

metric to pico_temperature which was defined earlier.

To create a new Grafana dashboard, select the Dashboards icon from Grafana’s

icon toolbar running down the left upper corner of your Grafana instance.

Then select the New Dashboard from the New drop-down menu, as shown in the

next screen capture.

Chapter 4. Networking a Temperature Monitor • 68

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Selecting this option will generate a new, blank Grafana dashboard, and

prompt you to add a new visualization, as shown in the next screenshot.

Select the Add visualization option. This will generate a new panel within the

dashboard, allowing you to identify the metric to display in the panel, along

with the type of chart to visualize the data. Make sure that your Prometheus

server is selected as the data source, and then in the first Query location

(labeled A), enter pico_temperature as the metric to visualize. Decide which unit

(Celsius or Fahrenheit) to display in the time series chart and set it accord-

ingly. For example, if you want to see the pico_temperature graph results in

Fahrenheit, select unit in the Labels section, and set it equal to fahrenheit. This

setup should look similar to the next screen image.

report erratum • discuss

Creating the Grafana Dashboard • 69

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

On the right side of this screen, you can choose a number of options, such

as the type of chart (keep the default Time series for now), plot color, and panel

label, to name a few. For example, if the Pico W was monitoring the tempera-

ture of a basement, you could label the panel Basement Temperature. Select the

Save button in the upper right corner of the page to save your changes. Once

saved, you should see the temperature data that the Prometheus server has

collected so far, visualized in a time series chart.

Although you have essentially completed the objective, it’s time to leverage

the power of Grafana’s alerting rules to generate an alert whenever a condition

is met. In this case, configure Grafana to send an email any time the temper-

ature being monitored drops below 66 degrees. Grafana supports a number

of different messaging services, ranging from Discord, Slack, and Microsoft

Teams integration, to more traditional SMS and email transmissions. Create

your messaging option of choice by selecting the Alerting bell-shaped icon from

Grafana’s icon toolbar. Then select + New Contact Point and select email from the

list. Note that you may need to configure and test your email server to work

with Grafana before you can select it. Since email servers can be configured

to integrate with Grafana in a variety of ways, visit Configure Grafana11 on

Grafana’s website for more details.

Once the default messaging service has been configured and tested, you can

use it as the Contact point in this temperature alert rule. Edit the Basement
Temperature panel by hovering the mouse cursor over the Basement Temperature
label (or whatever other label you might have called your panel), and select

the Edit option from the drop-down menu. Then select the Alert tab from the

configuration page and click on Create alert rule from this panel. Since you want

Grafana to send an email alert any time the temperature drops below, say,

66 degrees Fahrenheit, scroll down to the expression C area and set the

threshold expression with the condition INPUT B IS BELOW 66. Grafana automati-

cally created an expression B which represents the last value of A which in

turn represents the metric we’re measuring. These settings are shown in the

screenshot on page 71.

Scroll down to the Alert Evaluation behavior section and select a folder and evalua-

tion group for your alert. If this is your first Grafana alert, type the names on

the boxes and press Enter to create a new folder and group. Leave the

remaining settings in this section as default. Doing so instructs Grafana to

test the condition every minute for a duration of five minutes. This way, if

the temperature oscillates between say, 66 and 67 degrees every other minute,

11. https://grafana.com/docs/grafana/latest/setup-grafana/configure-grafana/

Chapter 4. Networking a Temperature Monitor • 70

report erratum • discuss

https://grafana.com/docs/grafana/latest/setup-grafana/configure-grafana/
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

your email inbox doesn’t get overwhelmed with Grafana alerts. The result is

shown in the next capture.

You can optionally add details and labels to your alert. When done, select the

Save and exit button in the upper right corner of this alert configuration page,

and after a few minutes, you should see a green heart next to your panel

label. This means that everything is healthy since the alerting rule has not

been triggered because the threshold conditions have not been met. An

example of this is shown in the screen capture on page 72.

report erratum • discuss

Creating the Grafana Dashboard • 71

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

When the alert condition is triggered, you should receive an email alert from

Grafana indicating the values that triggered the alert. When you visit the

dashboard, you’ll also see that Grafana has changed the heart from green

and healthy to a broken red heart. It’s this type of nice visual flair that has

endeared Grafana to IT pros and DevOps engineers alike.

The next photo shows the Pico W monitoring temperature next to a much

more expensive, proprietary home automation temperature monitor. Even

adding an inexpensive mini display to the Pico W would still keep it an order

of magnitude cheaper than the commercial monitoring counterpart.

Chapter 4. Networking a Temperature Monitor • 72

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

If you want to monitor more than one temperature scenario, simply add more

Pico Ws to your network running the REST service. Then add this new Pico

W’s IP address to the exporter with the variables you want assigned to it and

map these to the Grafana temperature panel you created. Then you can have

an army of Pico Ws monitoring a variety of temperature collection tracking

scenarios.

Next Steps

Congratulations! You built a sophisticated REST-based service that is being

monitored using the same tools that large enterprises employ in their IT

organizations. This robust configuration should maintain operational uptime

as long as power continues to flow through your Pi hardware.

Now that you can monitor temperature anywhere within range of your wireless

network, you can deploy the Pico W into a variety of scenarios. Want to monitor

the temperature of your refrigerator or freezer? Place the Pico W into it and

let it run. If outdoor temperature is more desired, house the Pico W in a

weatherproof case and shield it from sunlight while sampling the degrees.

Note that for those cases, you may want to power your Pico W using batteries

as suggested in the official Pico W guide.12

In our next project, you’ll build upon the infrastructure and application

principles created for the temperature monitor, and use a motion detection

sensor to identify whenever something changes in the monitored environment.

See you in the next chapter!

12. https://projects.raspberrypi.org/en/projects/introduction-to-the-pico/12

report erratum • discuss

Next Steps • 73

https://projects.raspberrypi.org/en/projects/introduction-to-the-pico/12
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

CHAPTER 5

Checking the (Garage) Door

In Chapter 4, Networking a Temperature Monitor, on page 45, you used the

Raspberry Pi Pico W’s embedded temperature sensor to monitor room temper-

ature. In this chapter, you’ll combine the versatility of Raspberry Pi Zero 2W

with a magnetic contact switch to determine if a door—in this case, a garage

door—is open or closed. For more details about the differences between these

two Raspberry Pi devices, consult Selecting a Raspberry Pi, on page 6.

You will also develop the software to report the garage door status, using an

API endpoint similar to the one you developed in Chapter 2, Building a REST API

Server, on page 15, and to send a Discord notification if you left the garage

door open at night.

Project’s Hardware Requirements

This project requires the following components:

• Raspberry Pi Zero 2W: A small and versatile device with GPIO pins to connect

the magnetic switch, and run the required software.

• Magnetic contact switch: A small magnetic sensor that indicates if a door is open

or closed.

• 2 jump wires: to connect the sensor to the GPIO pins on the Pi Zero W.

• Solderless Pin Headers: to provide an easy alternative to enable the Pi Zero 2W GPIO

pins without requiring solder, in case your Pi Zero does not come with GPIO pins.

For more details, consult Adding Other Hardware Components, on page 7.

The Raspberry Pi Zero is a remarkable device. Not only is it small and versatile,

but it’s also equipped with a General Purpose Input/Output (GPIO) interface.

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

The GPIO allows you to expand the Raspberry Pi and connect it to other devices

and sensors, providing the foundation to develop many other home automa-

tion projects. Some examples of how you can use the GPIO in home automation

include:

• Using distance sensors to notify if someone or something approaches

• Using motion sensors to detect movement in an area, like the porch

• Controlling lights and power outlets

• Connecting with temperature or humidity sensors to control the environment

• Verifying if doors or windows are closed

• Controlling motors or fans (with the help of other devices)

Upon completing this project, you’ll have both the hardware and software

foundation to develop other projects that use the Raspberry Pi GPIO. Let’s

get started.

Understanding the GPIO

The GPIO is a generic term for input/output interfaces; their implementation

varies across different vendors and devices. Usually vendors combine the

GPIO circuitry with a row of pins which allow external access to the device.

These pins are usually known as GPIO pinout or GPIO pins.

One of the major benefits of the Raspberry Pi GPIO implementation is the

standardization of the GPIO pinout across different Raspberry Pi models. All

modern Raspberry Pi devices—from the Raspberry Pi 3 to Raspberry Pi 5, and

Raspberry Pi Zero—implement a 40 pin GPIO interface, arranged in two par-

allel rows of 20 pins. The pins in all these devices also share the same func-

tion; therefore, learning how to use the GPIO in one device allows you to use

it on all these devices. Please note that the Raspberry Pi Pico and Pico W have

a different pinout layout than other Raspberry Pi devices due to their smaller

size and other constraints.

You can learn more about the Raspberry Pi’s GPIO layout and pin functions

on the official Raspberry Pi Physical Computing Guide.1

The Raspberry Pi GPIO has an embedded protection which makes connecting

low-power devices such as LEDs or small sensors relatively safe. Keep in mind

that it’s still an electrical device, and connecting devices that use a lot of

power may damage your Raspberry Pi. Do not connect motors, fans, or incan-

descent lamps to your Pi, for example.

1. https://projects.raspberrypi.org/en/projects/physical-computing/1

Chapter 5. Checking the (Garage) Door • 76

report erratum • discuss

https://projects.raspberrypi.org/en/projects/physical-computing/1
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

You can configure the GPIO pins as input or output depending on your

project’s requirements. The Raspberry Pi implementation provides a logic

circuit that allows you to configure the pins via software for increased conve-

nience. This allows you to quickly convert a Pi from one project to another

without tampering with circuits or jumpers, and it also allows you to use a

single Pi for multiple projects simultaneously.

A final benefit of the Raspberry Pi GPIO implementation is an embedded Pull

Up/Pull Down resistor you can activate via software when needed. A Pull Up/

Pull Down resistor ensures a known state for a signal which allows you to

quickly detect when the signal has changed and act on it. Without an embedded

resistor like this, many projects would require an external circuit that provides

the same capabilities. This convenience makes it easier to develop home

automation projects using the Pi’s GPIO. You’ll use the embedded Pull Up

resistor in this chapter’s project.

Many Raspberry Pi models provide the GPIO pin pre-soldered onto the board

and ready to use. Some smaller modes, such as the Raspberry Pi Zero 2W

used in this chapter, may or may not come with pre-soldered pins. In case

your Pi model does not have pins, we recommend using solderless pin headers

that you can easily snap onto your Pi, unless you’re comfortable soldering

pins to your board.

Now that you have a basic understanding of the GPIO functionality, let’s wire

the magnetic sensor to your Raspberry Pi GPIO.

Wiring the Magnetic Switch to the GPIO

For this project, you need to wire the magnetic switch to the Raspberry Pi

GPIO which allows you to detect when the switch state changes, then you

need to attach the switch to your garage door, or any other door you want to

use for this project. Let’s start wiring the switch to the GPIO.

The magnetic contact switch comes in two parts: the first part is the actual

switch that can be normally open or closed and the second part is a magnet.

When the magnet approaches the switch, it changes its state. In a normally

open switch, there’s no connection between the two wires. When the magnet

approaches, the switch closes and connects the wires. Conversely, in a nor-

mally closed switch, there’s contact between the two wires by default, and

the switch disconnects the wires when the magnet approaches.

You can use either a normally open or a normally closed switch for this project.

For the example in the book, we’re using a normally closed switch. In case

report erratum • discuss

Wiring the Magnetic Switch to the GPIO • 77

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

you’re using a normally open switch, reverse the order of “Open” and “Closed”

parameters in the code.

The magnetic switch comes with two wires. You can connect those wires to

two jumper cables to extend their lengths and make it easier to plug into the

Pi Zero 2W pins. Then connect one of the wires to a GPIO pin and the other

to a ground (GND) pin. You can use any of the GPIO pins, but for this example,

we’re using GPIO 12 pin which is the fifth from the right and the ground pin

right next to it, like the following diagram:

With the switch wired to the Raspberry Pi, attach the switch side to the wall

near the door, then attach the magnet part to the door, ensuring that they

are close to each other when the door is closed. To ensure the switch can

detect the magnet, they need to be at a maximum of 15 millimeters, or half

an inch from each other. This distance can vary with each device, so check

your switch spec for details.

When the project is assembled, attached to the door, and the Pi Zero W

powered up, it’s time to write the code to check the door state.

Coding the Magnetic Switch

Before we dive into coding the entire project, let’s focus on the core components

and learn how to control the Raspberry Pi GPIO using Go code. This section

provides the foundation to write software that interfaces with the GPIO. Upon

completion, you’ll understand how to initialize the GPIO, enable specific pins,

set the pins as input or output, and enable the embedded Pull Up/Down

resistor. These skills will enable you to develop this chapter’s project and

your own projects using the GPIO later on.

Chapter 5. Checking the (Garage) Door • 78

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Later in this chapter, after you understand how to read the switch state using

Go and the GPIO, you’ll add the API and notification features to the project.

To control the GPIO, you’ll use the external package go-rpio.2 Start by creating

a directory for this example and initializing the Go module for it:

$ mkdir magnetic
$ cd magnetic
$ go mod init magnetic
go: creating new go.mod: module magnetic

Then, write the code into the main.go file. Start by importing the required

packages:

garagedoor/magnetic/main.go

package main

import (
"fmt"
"os"

"github.com/stianeikeland/go-rpio/v4"
)

Next, define a constant value for the pin number you used to connect the

switch, in this case, pin 12:

garagedoor/magnetic/main.go

const pinNumber = 12

Then, add a new type state as an alias to the type rpio.State and attach a method

named String to it to print the state as Open or Closed instead of 0 or 1:

garagedoor/magnetic/main.go

type state rpio.State

func (s state) String() string {
if s == state(rpio.Low) {

return "Open"
}

return "Closed"
}

When you define a method named String that takes no inputs and returns a

string, you’re implicitly implementing Go’s fmt.Stringer interface which automat-

ically applies the defined format when you use the given type in a text context,

like when printing the value.

2. https://github.com/stianeikeland/go-rpio/v4

report erratum • discuss

Coding the Magnetic Switch • 79

http://media.pragprog.com/titles/gohome/code/garagedoor/magnetic/main.go
http://media.pragprog.com/titles/gohome/code/garagedoor/magnetic/main.go
http://media.pragprog.com/titles/gohome/code/garagedoor/magnetic/main.go
https://github.com/stianeikeland/go-rpio/v4
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Next, define the main function which opens and maps GPIO memory into the

program, sets pin 12 as an input pin, and reads the pin state:

garagedoor/magnetic/main.go

func main() {
if err := rpio.Open(); err != nil {

fmt.Println(err)
os.Exit(1)

}

// Unmap gpio memory when done
defer rpio.Close()

pin := rpio.Pin(pinNumber)

pin.Input()
rpio.PullMode(pin, rpio.PullUp)
door := state(pin.Read())

fmt.Println("Door is:", door)
}

Note that you’re using the method pin.Input() to set the GPIO pin as an input

pin, to receive the signal from the switch. You’re also using the function

rpio.PullMode with parameter rpio.PullUp to enable the Pull Up resistor for the given

pin, ensuring the switch signal is stable.

Now, save the file and download the required packages by using the command

go mod tidy:

$ go mod tidy
go: finding module for package github.com/stianeikeland/go-rpio/v4

Then run the application to test it. You should see the switch state according

to the magnet position. For example, if the door is closed:

$ go run .
Door is: Closed

Now that you can control the GPIO via code, let’s expand the example with

additional features.

Sending Notifications

Discord is one of the largest chat services available today. The platform offers

a very generous free tier with a rich API that we can use for our project needs.

Once you set up and log into your Discord account, create a new channel on

your server by selecting the + symbol to the right of the TEXT CHANNELS

label. In the pop-up, select the default #Text channel type, and name the

channel something apropos of the subject matter. In this case, call the channel

Chapter 5. Checking the (Garage) Door • 80

report erratum • discuss

http://media.pragprog.com/titles/gohome/code/garagedoor/magnetic/main.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

#garagedoor. We recommend using a private server for this case but if you share

this server with someone else, you can also toggle on the Private Channel option

so only you can view the #garagedoor channel on your Discord server. Your New

Channel dialog should look similar to the one shown in the next image.

Select the Create Channel button to continue. If you selected the Private Channel

option, select Next to continue to the next screen to list groups and any sub-

scribers to your server you would like to grant access to the new #garagedoor
channel. Select those groups or individuals you want to allow to get notified

from their Discord client anytime a new message is posted to the channel.

With the new #garagedoor channel created and displayed in the TEXT CHAN-

NELS listing, select the sprocket icon to the right of the #garagedoor label to

edit the channel. From this dialog box, select the Integrations menu item,

followed by clicking on the New Webhook button. Give the webhook a name like

GarageDoorWebhook and then select the Save Changes button to create the webhook.

Once you have saved your changes, select the Copy Webhook URL button to copy

the newly created webhook URL. This URL will be pasted as an environment

variable in our Go program as the address to post new notifications. Using

an environment variable makes it easy to modify the URL string without

recompiling and redeploying the code. This can happen if the URL is compro-

mised, or the target needs to change to a different text channel.

Another benefit of not including such sensitive, confidential strings like web-

hook URLs in your source code is that you don’t accidentally disclose the URL

in public source management services like GitHub. If you are using the Gitea

report erratum • discuss

Sending Notifications • 81

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

source code repository that was set up in Managing Source Code with Gitea,

on page 27, and are the only user on that system, and if you can only log into

the Pi running Gitea on your local network, the exposure risk is not as great.

But you should still practice safe data management even in those situations.

Hence, we’ll expose the Garage DoorWebhook URL only as an environment variable

within the final application container for now.

With the active webhook URL ready for use, we now have all the pieces in

place to complete the Go code for this project, so let’s build the code listing.

Writing the Software

With the basic functionality in place, it’s time to improve the program to be

more useful. You’ll make the program more robust by adding a configuration

file, expose the door state using a HTTP API, and send a Discord notification

in case you forgot you left the door open at night.

Start by creating a directory for this new version, and initializing the Go

module:

$ mkdir final
$ cd final
$ go mod init doorcheck
go: creating new go.mod: module doorcheck

Now add the code to read a configuration file in yaml format. Use the external

package yaml.v33 for this. Add the code to file config.go:

garagedoor/final/config.go

package main

import (
"errors"
"log"
"os"
"time"

"gopkg.in/yaml.v3"
)

type yamlHour struct {
t time.Time

}

func (yh *yamlHour) UnmarshalYAML(v *yaml.Node) error {
if v.Kind != yaml.ScalarNode {

return errors.New("value is not scalar")
}

3. https://gopkg.in/yaml.v3

Chapter 5. Checking the (Garage) Door • 82

report erratum • discuss

http://media.pragprog.com/titles/gohome/code/garagedoor/final/config.go
https://gopkg.in/yaml.v3
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

var err error
yh.t, err = time.Parse("3:04pm", v.Value)

return err
}

type config struct {
SwitchPinNumber int `yaml:"switch_pin_number"`
NightStart yamlHour `yaml:"night_start"`
NightEnd yamlHour `yaml:"night_end"`

}

func newConfig(configFile string) (*config, error) {
cf, err := os.Open(configFile)
if err != nil {

return nil, err
}

defer cf.Close()

var cfg *config
if err := yaml.NewDecoder(cf).Decode(&cfg); err != nil {

return nil, err
}

if cfg.SwitchPinNumber == 0 {
log.Println(cfg)
return nil, errors.New("switch pin needs to be defined")

}

if cfg.NightStart.t.IsZero() {
var err error
cfg.NightStart.t, err = time.Parse("3:04pm", "9:00pm")
if err != nil {

return nil, err
}

}

if cfg.NightEnd.t.IsZero() {
var err error
cfg.NightEnd.t, err = time.Parse("3:04pm", "7:00am")
if err != nil {

return nil, err
}

}

return cfg, nil
}

This part of the code defines a new struct type named config that reads three

configuration values from the configuration file:

• switch_pin_number: which allows the user to change the GPIO pin number

used for the switch

report erratum • discuss

Writing the Software • 83

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

• night_start: which represents the time the nightly notification period starts

• night_end: which represents the time the nightly notification period ends

Save and close config.go and create main.go by adding the import section with the

required dependencies:

garagedoor/final/main.go

package main

import (
"bytes"
"encoding/json"
"flag"
"fmt"
"log"
"net/http"
"net/url"
"os"
"time"

"github.com/stianeikeland/go-rpio/v4"
)

Then, define the same type state with the method String to print Open or Closed
like you did in Coding the Magnetic Switch, on page 78:

garagedoor/final/main.go

type state rpio.State

func (s state) String() string {
if s == state(rpio.Low) {

return "Open"
}

return "Closed"
}

Now, add a function setupGPIO to initialize the GPIO:

garagedoor/final/main.go

func setupGPIO(pinNumber int) (rpio.Pin, error) {
if err := rpio.Open(); err != nil {

log.Println("Error opening GPIO:", err)
return 0, err

}

pin := rpio.Pin(pinNumber)

pin.Input()
rpio.PullMode(pin, rpio.PullUp)

return pin, nil
}

Chapter 5. Checking the (Garage) Door • 84

report erratum • discuss

http://media.pragprog.com/titles/gohome/code/garagedoor/final/main.go
http://media.pragprog.com/titles/gohome/code/garagedoor/final/main.go
http://media.pragprog.com/titles/gohome/code/garagedoor/final/main.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Then, add the function getDoorState to read the switch state from the GPIO:

garagedoor/final/main.go

func getDoorState(pin rpio.Pin) state {
return state(pin.Read())

}

These two functions have the same functionality from the previous initial

example but split into two smaller functions to make it easier to reuse them

in the main function.

Next, add the function isNight to verify if the door is open at night:

garagedoor/final/main.go

func isNight(start, end time.Time) bool {
cur := time.Now().Format("15:04")

now, err := time.Parse("15:04", cur)
if err != nil {

log.Println(err)
return false

}

if end.Before(start) {
end = end.Add(24 * time.Hour)

}

if now.Before(start) {
now = now.Add(24 * time.Hour)

}

return now.After(start) && now.Before(end)
}

Then, add function sendNotification to send a Discord notification if the door is

open at night:

garagedoor/final/main.go

func sendNotification(discordWebhook, message string) {
u, err := url.Parse(discordWebhook)
if err != nil {

log.Println("Invalid Discord webhook URL:", err)
return

}

v := url.Values{}
v.Set("wait", "true")
u.RawQuery = v.Encode()

payload := struct {
Content string `json:"content"`

}{

report erratum • discuss

Writing the Software • 85

http://media.pragprog.com/titles/gohome/code/garagedoor/final/main.go
http://media.pragprog.com/titles/gohome/code/garagedoor/final/main.go
http://media.pragprog.com/titles/gohome/code/garagedoor/final/main.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Content: message,
}

var body bytes.Buffer
if err := json.NewEncoder(&body).Encode(payload); err != nil {

log.Println("Error creating JSON payload:", err)
return

}

request, err := http.NewRequest(http.MethodPost, u.String(), &body)
if err != nil {

log.Println("Error creating Discord request:", err)
return

}
request.Header.Add("Content-Type", "application/json")

client := http.Client{
Timeout: 10 * time.Second,

}

response, err := client.Do(request)
if err != nil {

log.Println("Error sending Discord request:", err)
return

}
defer response.Body.Close()

if response.StatusCode != http.StatusOK {
log.Printf(

"Invalid response from Discord channel: %s",
response.Status,

)
}

}

Now, complete the nightly door check functionality by adding the function

checkDoor which constantly checks the door state and sends a notification if

it’s open at night. Change the notification frequency time in the for range loop

if one minute is too short:

garagedoor/final/main.go

func checkDoor(pin rpio.Pin, cfg *config, discordWebhookURL string) {
for range time.Tick(1 * time.Minute) {

doorState := getDoorState(pin)
log.Println("Door state:", doorState)
if doorState == state(rpio.Low) {

if isNight(cfg.NightStart.t, cfg.NightEnd.t) {
message := fmt.Sprint(

"Door open at night:", time.Now(),
)

Chapter 5. Checking the (Garage) Door • 86

report erratum • discuss

http://media.pragprog.com/titles/gohome/code/garagedoor/final/main.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

log.Println(message)
go sendNotification(

discordWebhookURL,
message,

)
}

}
}

}

Next, implement the HTTP API server by defining an API handler function to

handle requests to obtain the door state using path /getdoor:

garagedoor/final/main.go

func doorStateHandler(pin rpio.Pin) http.HandlerFunc {
return func(w http.ResponseWriter, _ *http.Request) {

doorState := getDoorState(pin)
log.Println("Door state:", doorState)

response := struct {
DoorState state `json:"door_state"`
DoorStateText string `json:"door_state_text"`

}{
DoorState: doorState,
DoorStateText: fmt.Sprint(doorState),

}

w.Header().Set("Content-Type", "application/json")
if err := json.NewEncoder(w).Encode(response); err != nil {

log.Println("Error replying door state:", err)
}

}
}

Then, complete the HTTP API server by adding the multiplexer function which

attaches all the routes and defines a root route:

garagedoor/final/main.go

func newMux(pin rpio.Pin) http.Handler {
mux := http.NewServeMux()

mux.HandleFunc("GET /", func(w http.ResponseWriter, _ *http.Request) {
fmt.Fprintln(w, "Door status API running...")

})

mux.Handle("/getdoor", doorStateHandler(pin))

return mux
}

Finally, put it all together by adding the main function as the program entry

point. This function reads the configuration file and Discord webhook URL

report erratum • discuss

Writing the Software • 87

http://media.pragprog.com/titles/gohome/code/garagedoor/final/main.go
http://media.pragprog.com/titles/gohome/code/garagedoor/final/main.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

from an environment file; initializes the GPIO, then starts a goroutine to

constantly check the door state; and finally, starts the HTTP API server:

garagedoor/final/main.go

func main() {
c := flag.String("c", "config.yml", "Config file")
flag.Parse()

cfg, err := newConfig(*c)
if err != nil {

log.Println("Error opening config file:", err)
os.Exit(1)

}

discordWebhookURL, ok := os.LookupEnv("DISCORD_WEBHOOK_URL")
if !ok {

log.Println("'DISCORD_WEBHOOK_URL' env var is required")
os.Exit(1)

}

pin, err := setupGPIO(cfg.SwitchPinNumber)
if err != nil {

log.Println("Error opening GPIO:", err)
os.Exit(1)

}
defer rpio.Close()

go checkDoor(pin, cfg, discordWebhookURL)

s := &http.Server{
Addr: ":3060",
Handler: newMux(pin),
WriteTimeout: 10 * time.Second,

}

log.Println("Starting API server on port :3060")
if err := s.ListenAndServe(); err != nil {

log.Println(err)
os.Exit(1)

}
}

With the code in place, save the main.go file and download the required depen-

dencies with go mod tidy:

$ go mod tidy

Then test the program by running go run .:

$ go run .
2024/01/31 00:03:37 Error opening config file: open config.yml:

no such file or directory
exit status 1

Chapter 5. Checking the (Garage) Door • 88

report erratum • discuss

http://media.pragprog.com/titles/gohome/code/garagedoor/final/main.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

The program fails to execute because the configuration file is required. Let’s

configure the program next.

Configuring and Testing the Application

To allow this program to work, you need to configure it by providing two

requirements:

1. A configuration file, config.yml, which configured the pin number to use as

well as the notification period

2. The Discord webhook URL using environment variable DISCORD_WEBHOOK_URL

Start by adding a configuration file with the desired parameters according to

your requirements. For example:

garagedoor/final/config.yml

switch_pin_number: 12
night_start: "10:30pm"
night_end: "7:00am"

Next, you need to provide Discord’s webhook URL that you created in Sending

Notifications, on page 80, to send Discord notifications. Then export the

variable:

export DISCORD_WEBHOOK_URL=<your_discord_webhook_URL>

Now you can finally run the program and test it:

$ go run .
2024/01/31 00:17:37 Starting API server on port :3060
2024/01/31 00:18:37 Door state: Closed

You can query the door state at any time by sending a HTTP GET request to

your Pi Zero 2W IP address or hostname, on port 3060:

$ curl -s http://<PI_ZERO_2W_IP>:3060/getdoor
{

"door_state": 1,
"door_state_text": "Closed"

}

If the door is open during the notification period set in your configuration file,

and your Discord webhook is correctly configured, you’ll receive a Discord

notification similar to: Door open at night:2024-01-30 01:49:19.934671452 -0500 EST
m=+60.056133938.

As the final step, let’s containerize the application to run it with Docker.

report erratum • discuss

Configuring and Testing the Application • 89

http://media.pragprog.com/titles/gohome/code/garagedoor/final/config.yml
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Containerizing the Deployment

To facilitate running this application as a system service, isolated from other

processes in the same Raspberry Pi Zero 2W, let’s create a container image

for it. By running an application as container, you can also set it to automat-

ically start when the Pi Zero 2W boots up or in case the application fails for

any reason.

Start by adding a Dockerfile with the image-building instructions. Like other

examples in the book, we’re using the staged approach where we build the

application using the official Go image, then copy the application to another

image running Alpine Linux:

garagedoor/final/Dockerfile

FROM docker.io/golang:1.22 AS builder
RUN mkdir /app
WORKDIR /app
COPY . /app
RUN CGO_ENABLED=0 GOOS=linux GOARCH=arm go build \

-ldflags="-s -w" \
-o doorcheck \
.

FROM docker.io/alpine:latest
RUN mkdir /app && adduser -h /app -D doorcheck
WORKDIR /app
COPY --chown=doorcheck --from=builder /app/doorcheck .
ENTRYPOINT ["/app/doorcheck"]

Note that, unlike other images you built for Raspberry Pi 4 or 5, you’re

building an image for the Pi Zero 2W which uses a 32-bit ARM CPU. Therefore,

the Go build parameter GOARCH is set to arm instead of arm64.

Now, build the image using docker build:

$ docker build -t doorcheck:v1 .

Check the image created:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
doorcheck v1 229f723120e7 7 minutes ago 10.5MB

Now, launch the container using docker run. Use the option -e to expose the

environment variable DISCORD_WEBHOOK_URL to the container. Use option -v to
mount the config file config.yml from your host machine into the /etc/config.yml
file in the container. Mount the file /etc/localtime from the host to the container

so the container runs in the same time zone as the host, avoiding time con-

versions. Expose port 3060 for the API by using option -p. Use option --device

Chapter 5. Checking the (Garage) Door • 90

report erratum • discuss

http://media.pragprog.com/titles/gohome/code/garagedoor/final/Dockerfile
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

to expose the /dev/gpiomem and /dev/mem devices, which allows the container

access to the GPIO. Finally, append the application parameter -c /etc/config.yml,
allowing the application to read the configuration file mounted from your local

machine:

$ docker run -d \
--name doorcheck \
--restart=always \
-v $(pwd)/config.yml:/etc/config.yml \
-v /etc/localtime:/etc/localtime \
-p 3060:3060 \
-e DISCORD_WEBHOOK_URL=${DISCORD_WEBHOOK_URL} \
--device /dev/gpiomem --device /dev/mem \
doorcheck:v1 \
-c /etc/config.yml

Ensure the container is running by using docker ps:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES
441922a6339c doorcheck:v1 "/app/doorcheck -c /…" 2 minutes ago

Up 2 minutes 0.0.0.0:3060->3060/tcp doorcheck

You can also check the application logs:

$ docker logs -f doorcheck
2024/01/31 01:08:34 Starting API server on port :3060
2024/01/31 01:08:53 Door state: Open

Finally, test the application by issuing a GET request to the API server:

$ curl -s http://192.168.10.131:3060/getdoor
{

"door_state": 0,
"door_state_text": "Open"

}

Now you can rest assured you’ll never forget to close the garage door at night.

Next Steps

This project provides a useful system to verify if your garage door is open or

closed and notify you in case you left it open at night. In addition, this project

presents the basics you need to use the Raspberry Pi GPIO. You can build

on this knowledge to use other types of sensors, like motion sensors or dis-

tance sensors, to build even more complex and smart solutions for your home

automation. In fact, in Chapter 7, Watching the Birds, on page 113, you’ll use

the GPIO again with a PIR motion sensor to snap nice wildlife pictures.

report erratum • discuss

Next Steps • 91

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

You can also expand this project by using the magnetic switch in other places

like the front or back door, and any other place you need a quick way to check

if two parts are connected. On the software side, you can improve the project

by adding new features such as avoiding continuous notifications, or sending

a notification if the door has been open for more than a few hours during the

day. There are many possibilities, which make building your own projects fun.

In the next chapter, you’ll use the Hue colored light strip to build an auto-

mated and visual way to monitor the weather outside. See you there.

Chapter 5. Checking the (Garage) Door • 92

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

CHAPTER 6

Lighting the Weather

In Chapter 4, Networking a Temperature Monitor, on page 45, we created a

network-enabled temperature probe to report current temperature conditions.

While we could use that same approach for monitoring outdoor temperatures

as well, the Pico W would need to be shielded in a weather-resistant case. If

the external temperatures became extreme, the Pico W might permanently

fail. Fortunately, enough external temperature sensors are already monitoring

outdoor weather conditions. We can simply poll available APIs for JSON

payloads containing current weather condition values. But rather than simply

report the number, we can use colored bulb lighting to visually indicate

whether it’s cold, comfortable, or hot outside. We’ll send color commands to

a Philips Hue lighting setup based on the temperature values received by the

outdoor temperature API call.

Project’s Hardware Requirements

This project requires these components:

• Raspberry Pi server: A Raspberry Pi 3, 4, or Zero 2 to act as the application server.

• Hue base station: Part of the Hue Start Kit, it maintains the inventory and state

of the Hue lighting in your home.

• Hue multi-colored lighting strip: The light we’ll program based on the outdoor

temperature.

For more details, consult Adding Other Hardware Components, on page 7.

After you complete this project, it’s going to look like the picture on page 94,

where you can see the light with two different states, blue and red.

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

If the light is blue, grab a jacket because it’s cold outside. Is the light red?

Then it’s warm enough to enjoy the outdoors wearing a T-shirt.

In this chapter, you’ll use REST API calls to obtain the external weather

information and control the lights. Handling APIs is an important skill to

learn as it allows you to obtain information from a large pool of sources. It

also allows you to control automation devices that expose such API interfaces,

expanding the range of home automation controllers you can use on your

own projects.

Let’s get started.

Polling the Weather

To query the current weather conditions, we need access to an API that can

provide those details. Fortunately, a service called OpenWeather1 offers a free

tier for developers that allows a copious number of calls to their service. Sign

up2 to request a free API key. You’ll need this key when making calls to

OpenWeather’s API. In particular, it’ll be used to poll the current outdoor

temperature in your area.

1. https://openweathermap.org/
2. https://home.openweathermap.org/users/sign_up

Chapter 6. Lighting the Weather • 94

report erratum • discuss

https://openweathermap.org/
https://home.openweathermap.org/users/sign_up
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Once you have your free OpenWeather API key, test it out by polling the cur-

rent temperature in your area with this small Go program, which uses the

openweathermap package to query the OpenWeather API. Replace the API_KEY

and ZIP_CODE values with your own before running the test. If you live outside

the United States, replace the country code as well:

package main

import (
"fmt"
"log"
"os"

owm "github.com/briandowns/openweathermap"
)

func main() {
w, err := owm.NewCurrent("F", "EN", API_KEY)
if err != nil {

log.Fatalln(err)
}

w.CurrentByZip(ZIP_CODE, "US")
fmt.Println(w.Main.Temp)

}

Save the file as openweathertest.go and run go mod tidy to download GitHub user

Brian Downs’s openweathermap Go library. This library makes it very easy

to use OpenWeather’s API in the Go language environment.

With everything nice and tidy, run the program using the usual Go run syntax

to test your API key, like this:

$ go run openweathertest.go

Assuming the values you replaced for your API_KEY and ZIP_CODE are valid,

you should see the current temperature output in Fahrenheit. If you prefer

the temperature scale to be reported in Celsius, change the parameter in

NewCurrent to C, like this:

w, err := owm.NewCurrent("C", "EN", API_KEY)

Congratulations! You’re now able to poll the current outdoor temperature in

your area. The OpenWeather API offers many other options you can explore.

The free tier is somewhat limited in the level of detail and forecast information

it provides, but enough data is available to be useful for our project. Feel free

to experiment with other calls to the API, as well as poll other geographic

regions where you might be interested in the current temperature.

report erratum • discuss

Polling the Weather • 95

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

In the next section, we’ll use the current temperature value received from the

w.Main.Temp variable and light a Hue Philips color lightstrip to visually reflect

the current outdoor temperature.

Changing the Color

The Hue base station maintains the inventory and state of the Hue lighting

in your home, and the lighting strip is what we’ll program based on the outdoor

temperature. In order to make the color of the lighting meaningful, we need

to determine temperature ranges with which to display the appropriate color.

For example, the color blue is frequently associated with cold. So setting the

light strip to that color anytime the temperature is below 50 degrees Fahr-

enheit would indicate cooler temperatures outside. Conversely, the color red

typically indicates hot. Thus, anytime the outdoor temperature is hotter than

90 degrees, change the light strip color to red. Here are the color recommen-

dations between those two values:

Blue = Below 50 degrees
Yellow = Between 51 and 65 degrees
Green = Between 66 and 79 degrees
Orange = Between 80 and 89 degrees
Red = Above 90 degrees

Let’s codify those rules in Go using a switch statement and append it to the

openweathertest.go program to test. To make it easier to code the switch statement,

first assign the temperature returned by the API call w.Main.Temp to a new

variable currentTemp in the main function:

var currentTemp = w.Main.Temp

Then, append this switch block to the end of the main function to display the

color:

switch {
case currentTemp < 51:

fmt.Println("Blue")
case currentTemp >= 51 && currentTemp < 66:

fmt.Println("Yellow")
case currentTemp >= 66 && currentTemp < 80:

fmt.Println("Green")
case currentTemp >= 80 && currentTemp < 90:

fmt.Println("Orange")
case currentTemp >= 90:

fmt.Println("Red")
}

Chapter 6. Lighting the Weather • 96

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Run the program via the usual go run openweathertest.go command, and depending

on the current outdoor temperature, the appropriate color should display

right after the actual temperature value that was evaluated. Now that the

proper respective color is indicated based on the outside temperature, it’s

time to hook up and connect to the Hue base station.

Programming the Hue

Before we can start programming the Hue from a Go application, make sure

that you have correctly set up the Hue base station on your network, and

added the light strip to the Hue’s inventory. You can use the official Philips

Hue app, available from either the Android3 or iOS4 app stores.

Once you can remotely control your Hue light strip from the Hue app, you

are ready to configure a new user account on the Hue base station. You’ll use

this account to interact with and send commands from your Go application.

Several Hue libraries for Go are available on GitHub. The one that works best

with this particular project was created by GitHub user Collinux, called gohue.

This rudimentary library makes it easy to connect, control, and set basic

colors on Hue lighting.

Before we can remotely control Hue-managed lights, we need an authorized

User ID to log into the Hue base station. The gohue library provides a CreateUser
function that instructs the Hue to generate a new User ID for this purpose.

To do so, write the following Go program:

package main

import (
"github.com/collinux/gohue"

)

func main() {
bridgesOnNetwork, _ := hue.FindBridges()
bridge := bridgesOnNetwork[0]
username, _ := bridge.CreateUser("gohomeuser")
fmt.Println(username)

}

Save the code as createhueuser.go and run it with the Hue base station nearby.

You’ll need to press the large button on the top of the Hue base station to

authorize the User ID creation request when the createhueuser.go program is run.

$ go run createhueuser.go

3. https://play.google.com/store/apps/details?id=com.philips.lighting.hue2
4. https://apps.apple.com/ie/app/philips-hue/id1055281310

report erratum • discuss

Changing the Color • 97

https://play.google.com/store/apps/details?id=com.philips.lighting.hue2
https://apps.apple.com/ie/app/philips-hue/id1055281310
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Remember to copy the username ID that is generated after authorizing the

request on the Hue. You’ll use this ID for programmatic Hue base station

access.

Now that you have created the new authorized Hue account, you can use it

when programmatically manipulating your Hue lights. Verify that this newly

generated User ID allows you to control your Hue light by creating a simple

program that turns the light on. The following sample code assumes you

named your light “Desk” using the Hue smartphone app. You can reference

this light in your code using the function GetLightByName() and whatever actual

name you assigned to the light using the Hue smartphone app.

package main

import (
"github.com/collinux/gohue"

)

func main() {
HUE_ID := os.Getenv("HUE_ID")
HUE_IP_ADDRESS := os.Getenv("HUE_IP_ADDRESS")

bridge, _ := hue.NewBridge(HUE_IP_ADDRESS)

bridge.Login(HUE_ID)

deskLight, _ := bridge.GetLightByName("Desk")

deskLight.On()
}

Save the code as huetest.go and make sure your HUE_ID and HUE_IP_ADDRESS
environment variables are properly assigned. Then run the code via the typical

go run command.

$ go run huetest.go

If everything runs successfully, your targeted Hue light should turn on. Now

that we can control lights from Go, let’s expand our code to run as a service.

Putting It All Together

Now that you have the individual pieces in place to check the weather and

control the Hue lights, let’s put it all together by expanding the program to

check the temperature status at any time from any other application that

sends a request to the service. In addition, let’s also allow the results to be

exported regularly to a Prometheus exporter that can be visualized in Grafana.

Lastly, we’ll want to remove the statically defined values in our code and move

it into a configuration file that can be easily edited. This way, if there are

Chapter 6. Lighting the Weather • 98

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

changes to the color scheme, API keys, locations, or other variables, we don’t

have to edit and recompile the source code to activate those changes.

Start the final version by creating the HTML file template for the home page

with a link to redirect the user to the metrics endpoint. Later, you’ll use Go’s

embed package to embed this file into the final binary, like you did in Creating

the Prometheus Exporter, on page 58:

lightingweather/rootPage.html

<html>
<head>

<title>External Weather Temperature Exporter</title>
</head>
<body>

<h1>External Weather Temperature Exporter</h1>
<p>metrics</p>

</body>
</html>

Next, create the file lightingweather.go for your program, and add the package
definition:

lightingweather/lightingweather.go

package main

As the program’s functionality expands, so too are the external libraries

needed to assist with these new capabilities. Add the import statement con-

taining all the libraries needed to get the program to run successfully:

lightingweather/lightingweather.go

import (
_ "embed"
"flag"
"log"
"math"
"net/http"
"os"
"time"

"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/client_golang/prometheus/promauto"
"github.com/prometheus/client_golang/prometheus/promhttp"

owm "github.com/briandowns/openweathermap"
hue "github.com/collinux/gohue"

)

Note that several additional standard Go libraries such as net/http and time
were added, along with the Prometheus Go libraries we used in the previous

project.

report erratum • discuss

Putting It All Together • 99

http://media.pragprog.com/titles/gohome/code/lightingweather/rootPage.html
http://media.pragprog.com/titles/gohome/code/lightingweather/lightingweather.go
http://media.pragprog.com/titles/gohome/code/lightingweather/lightingweather.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Next, we’ll create a variable for the Prometheus exporter home page by

embedding the rootPage.html file using the embed package. While not absolutely

required, it’s helpful to have this descriptive web page for exporters to docu-

ment their purpose, along with any other important instructions regarding

the metrics being collected.

lightingweather/lightingweather.go

//go:embed rootPage.html
var rootPageHTML []byte

The biggest change we’ll make to the prototype code we wrote earlier is to

encapsulate getting the temperature and changing the lighting into a single

function. Additionally, we’ll want to incorporate the values assigned in the

configuration file to avoid hardcoding these values into the function. Pay close

attention to the for statement within this function that determines whether

to execute the function immediately, or wait 30 minutes to do so. This way,

the application can respond to both immediate requests from a different

application, or to the Prometheus exporter that will provide the current tem-

perature value every 30 minutes.

lightingweather/lightingweather.go

func lightweather(cfg *config, chRefresh <-chan struct{}) {
externalWeatherTemp := promauto.NewGauge(prometheus.GaugeOpts{

Name: "external_weather_temperature",
})

run := func() {
log.Println("INFO: Getting current temperature")
currentTemp, err := getCurrentTemperature(cfg)
if err != nil {

log.Println("ERROR:", err)
}

externalWeatherTemp.Set(float64(currentTemp))

log.Println("INFO: Setting light")
if err := setLight(cfg, currentTemp); err != nil {

log.Println("ERROR:", err)
}

}

for {
select {
case <-chRefresh:

run()
case <-time.Tick(30 * time.Minute):

run()
}

}
}

Chapter 6. Lighting the Weather • 100

report erratum • discuss

http://media.pragprog.com/titles/gohome/code/lightingweather/lightingweather.go
http://media.pragprog.com/titles/gohome/code/lightingweather/lightingweather.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Next, in order to provide scalability to the application, we’ll use a really

helpful feature in Go called channels and goroutines to run the lightweather function

concurrently. We’re using the function make to create a buffered channel,

allowing caching of requests. This way, if Prometheus is polling the applica-

tion’s values at the exact same time as another external application is doing

so, these requests will be processed in the order they were received rather

than being discarded.

In Go, you can use a channel to pass values across different goroutines running

concurrently. In this case, we’re using a channel of type empty struct - struct{}
since we don’t need to pass any real values, but rather, just to signal a refresh.

By using empty struct, we avoid any memory allocations. Add this code to your

program:

lightingweather/lightingweather.go

func newMux(cfg *config) http.Handler {
mux := http.NewServeMux()

mux.HandleFunc("/", func(w http.ResponseWriter, _ *http.Request) {
log.Println("INFO: Received request root")
w.Write(rootPageHTML)

})

chRefresh := make(chan struct{}, 2)

go lightweather(cfg, chRefresh)

chRefresh <- struct{}{}

mux.HandleFunc("POST /refresh",
func(w http.ResponseWriter, _ *http.Request) {

log.Println("INFO: Received refresh request")

chRefresh <- struct{}{}
w.WriteHeader(http.StatusAccepted)
w.Write([]byte("Refresh request accepted"))

})

mux.Handle("/metrics", promhttp.Handler())

return mux
}

Pay attention to how we modified the newMux function from the previous project

to add a channel and two routes to handle the two types of requests discussed

earlier. We send the empty struct value over the channel by using the syntax

struct{}{}, which defines an anonymous value {} of type struct{}.

In the program’s main function, we’ll import the key values from the config.yml
file, then start the HTTP server, listening on port 3040. If any errors occur

report erratum • discuss

Putting It All Together • 101

http://media.pragprog.com/titles/gohome/code/lightingweather/lightingweather.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

while attempting to start the server, those errors will be logged to the standard

out console.

lightingweather/lightingweather.go

func main() {
c := flag.String("c", "config.yml", "Config file")
flag.Parse()

cfg, err := newConfig(*c)
if err != nil {

log.Println("ERROR:", err)
os.Exit(1)

}

s := &http.Server{
Addr: ":3040",
Handler: newMux(cfg),
ReadTimeout: 10 * time.Second,
WriteTimeout: 10 * time.Second,

}

if err := s.ListenAndServe(); err != nil {
log.Println("ERROR:", err)
os.Exit(1)

}
}

We’re almost done. In this main package, we just have to define the getCurrent-
Temperature() and setLight() functions we called from the lightweather() function we

created earlier.

lightingweather/lightingweather.go

func getCurrentTemperature(cfg *config) (int, error) {
w, err := owm.NewCurrent(cfg.Unit, cfg.Lang, cfg.OWMAPIKey)
if err != nil {

return 0, err
}

err = w.CurrentByName(cfg.Location)
return int(math.Round(w.Main.Temp)), err

}

func setLight(cfg *config, currentTemp int) error {
bridge, err := hue.NewBridge(cfg.HueIPAddress)
if err != nil {

return err
}

// hue-id, _ := bridge.CreateUser("create-new-user")
if err := bridge.Login(cfg.HueID); err != nil {

return err
}

Chapter 6. Lighting the Weather • 102

report erratum • discuss

http://media.pragprog.com/titles/gohome/code/lightingweather/lightingweather.go
http://media.pragprog.com/titles/gohome/code/lightingweather/lightingweather.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

weatherLight, err := bridge.GetLightByName(cfg.LightName)
if err != nil {

return err
}

if err := weatherLight.SetColor(
pickColor(cfg, currentTemp)); err != nil {
return err

}

return weatherLight.On()
}

Finally, save the file lightingweather.go with the main part of the program ready.

Next, let’s add a configuration feature that allows you to provide a configura-

tion file to your application.

Configuring the Application Settings

To make your program more flexible, let’s add a feature that allows you to

specify required parameters using a configuration file in YAML format. This

way, if the conditions change, you can update the configuration files without

recompiling your application. Create a file config.go that’s responsible for

importing the key values stored in the config.yml file, like this:

lightingweather/config.go

package main

import (
"errors"
"fmt"
"os"
"sort"

hue "github.com/collinux/gohue"
"gopkg.in/yaml.v3"

)

var errInvalidColor = errors.New("invalid color")

type color struct {
Color string `yaml:"color"`
Threshold int `yaml:"threshold"`

}

var colorTranslate = map[string]*[2]float32{
"blue": hue.BLUE,
"cyan": hue.CYAN,
"green": hue.GREEN,
"orange": hue.ORANGE,
"pink": hue.PINK,

report erratum • discuss

Configuring the Application Settings • 103

http://media.pragprog.com/titles/gohome/code/lightingweather/config.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

"purple": hue.PURPLE,
"red": hue.RED,
"white": hue.WHITE,
"yellow": hue.YELLOW,

}

type config struct {
Unit string `yaml:"unit"`
Lang string `yaml:"lang"`
Location string `yaml:"location"`
HueID string `yaml:"hue_id"`
HueIPAddress string `yaml:"hue_ip_address"`
OWMAPIKey string `yaml:"owm_api_key"`
LightName string `yaml:"light_name"`
MaxColor string `yaml:"max_color"`
Colors []color `yaml:"colors"`

}

func (cfg *config) sortColorRange() *config {
sort.Slice(cfg.Colors, func(i, j int) bool {

return cfg.Colors[i].Threshold < cfg.Colors[j].Threshold
})

return cfg
}

func newConfig(configFile string) (*config, error) {
cf, err := os.Open(configFile)
if err != nil {

return nil, err
}

defer cf.Close()

var cfg config
if err := yaml.NewDecoder(cf).Decode(&cfg); err != nil {

return nil, err
}

for _, cl := range cfg.Colors {
if _, ok := colorTranslate[cl.Color]; !ok {

return nil, fmt.Errorf("%w: %s",
errInvalidColor, cl.Color)

}
}

// Alow user to override OWM API Key with env var
if owmKey, ok := os.LookupEnv("OWM_API_KEY"); ok {

cfg.OWMAPIKey = owmKey
}

return cfg.sortColorRange(), nil
}

Chapter 6. Lighting the Weather • 104

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

func pickColor(cfg *config, curTemp int) *[2]float32 {
for _, cl := range cfg.Colors {

if curTemp < cl.Threshold {
return colorTranslate[cl.Color]

}
}

return colorTranslate[cfg.MaxColor]
}

This part of the program defines a struct named config to store important con-

figuration options such as your Location, API Key, and color thresholds, among

others. Then it defines a function newConfig that reads that information from

a YAML configuration file using the package gopkg.in/yaml.v3. Since your API

key could be sensitive information, this function also allows overriding it

using an environment variable OWM_API_KEY so you can provide the key at run

time instead of saving it to a file that could end up in a Git repository.

Finally, this is a sample config.yml file where you’ll replace the placeholder

values with values relevant to you, such as:

• the API key you obtained from OpenWeather

• whether to report temperature values in Celsius (C) or Fahrenheit (F)

• which language and location you prefer to query

• the Hue base information like Hue ID and IP address

• multi-color light name you want to use

• the color thresholds to display on the light, based on unit and values

lightingweather/config.yml

unit: "C"
lang: "EN"
location: "Chicago, US"
hue_id: "12345"
hue_ip_address: "192.168.0.33"
owm_api_key: "123"
light_name: "Desk"

max_color: red

colors:
- color: orange
threshold: 30

- color: green
threshold: 20

- color: yellow
threshold: 25

- color: blue
threshold: 5

report erratum • discuss

Configuring the Application Settings • 105

http://media.pragprog.com/titles/gohome/code/lightingweather/config.yml
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Again, it’s important to note just how helpful and efficient it is to store these

variables in a configuration file, so they can be easily modified without having

to recode and recompile your project every time your lighting or location

preferences change.

Once these files are in place, containing valid OpenWeather values and Hue

lighting variables, you can run and test the project via the usual go run
command.

$ go run lightingweather.go config.go
2023/07/29 20:54:38 INFO: Getting current temperature
2023/07/29 20:54:38 INFO: Setting light

If running this application locally, open a browser and visit http://localhost:3040
and you should see the “External Weather Temperature Exporter” page display

with a link to the metrics page. Selecting that link will list the various Prome-

theus exporter values, one of which is the external_weather_temperature variable

with the current weather value next to it.

Congratulations! You have created a sophisticated, scalable weather applica-

tion that sets the light color to indicate the current temperature range. Now

let’s make it even more robust by placing it into a container that’ll start

whenever the Pi it’s running on restarts.

Containerizing and Deploying the App

Let’s deploy the application on the Raspberry Pi as a container. First, create a

container image for this application by writing a Dockerfile using the multi-stage

approach you used in Containing and Deploying the Exporter, on page 65:

lightingweather/Dockerfile

FROM docker.io/golang:1.22 AS builder
RUN mkdir /app
WORKDIR /app
COPY . /app
RUN CGO_ENABLED=0 GOOS=linux GOARCH=arm64 go build \

-ldflags="-s -w" \
-o lightweather \
lightingweather.go config.go

FROM docker.io/alpine:latest
RUN mkdir /app && adduser -h /app -D lightweather
WORKDIR /app
COPY --chown=lightweather --from=builder /app/lightweather .
EXPOSE 3040
ENTRYPOINT ["/app/lightweather"]

Chapter 6. Lighting the Weather • 106

report erratum • discuss

http://media.pragprog.com/titles/gohome/code/lightingweather/Dockerfile
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

The content of this Dockerfile is almost the same as the other Dockerfiles you’ve

used so far in this book, but instead of using the CMD instruction to run the

application, we’re using the ENTRYPOINT instruction. Using the ENTRYPOINT
instructions facilitates passing additional parameters to the application, which

is useful in this case to specify the option -c to use an alternative config file,

allowing you to map a file from the host when launching the container.

Save the Dockerfile and use the command docker build to build the container

image:

$ docker build -t lightweather:v1 .

Verify the image was created correctly using docker images:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
lightweather v1 64b5c2373371 6 minutes ago 17.6MB

To run this application and connect to the OpenWeather API, you need to

provide the API key. While you can do this by specifying it in the configuration

file, there’s a chance that you could commit it to a Git repository and expose

the credentials. Instead, let’s use an environment variable to define the key

locally. First, export the environment variable on the shell:

$ export OWM_API_KEY="my_api_key"

Now, launch the container using docker run. Use the option -e to expose the envi-

ronment variable OWM_API_KEY to the container. Use option -v to mount the config

file config.yml from your host machine into the /etc/config.yml file in the container.

Use the Prometheus network prometheus_prom_net to make it easier for the Prome-

theus container to scrape metrics from this application. Finally, append the

application parameter -c /etc/config.yml, allowing the application to read the config-

uration file mounted from your local machine:

$ docker run -d \
--name lightweather \
--restart=always \
-v $(pwd)/config.yml:/etc/config.yml \
-p 3040:3040 \
-e OWM_API_KEY=${OWM_API_KEY} \
--net=prometheus_prom_net \
lightweather:v1 \
-c /etc/config.yml

Ensure the container is running by using docker ps:

report erratum • discuss

Containerizing and Deploying the App • 107

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES
98d505b2b798 lightweather:v1 "/app/lightweather -…" 2 minutes ago

Up 2 minutes 0.0.0.0:3040->3040/tcp lightweather

You can also check the application logs:

$ docker logs -f lightweather
2023/07/30 04:14:55 INFO: Getting current temperature
2023/07/30 04:14:55 INFO: Setting light

This application refreshes your light according to the external weather auto-

matically every 30 minutes. You can force a refresh at any moment by hitting

the refresh endpoint with a POST HTTP request. Test the refresh functionality

using the command curl like this, replacing PI_HOST with your Raspberry Pi

hostname or IP address:

$ curl -s -XPOST <PI_HOST>:3040/refresh

You can check the refresh call succeeded by looking at the application logs

using docker logs:

$ docker logs -f lightweather
...
2023/07/30 04:33:37 INFO: Received refresh request
2023/07/30 04:33:37 INFO: Getting current temperature
2023/07/30 04:33:37 INFO: Setting light

Your light strip may also have changed color depending on the external

temperature.

In addition to controlling the light strip, your application exposes the external

temperature as a Prometheus metric. You can check it by issuing an HTTP

GET request to the metrics endpoint:

$ curl -s <PI_HOST>:3040/metrics | grep -i weather
HELP external_weather_temperature
TYPE external_weather_temperature gauge
external_weather_temperature 24

Configure your Prometheus instance to scrape for these metrics by creating

a service discovery file for it:

lightingweather/sd_lightweather.yml

- labels:

job: lightweather
targets:
- 'lightweather:3040'

Chapter 6. Lighting the Weather • 108

report erratum • discuss

http://media.pragprog.com/titles/gohome/code/lightingweather/sd_lightweather.yml
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Since you’re running the application on the same network as Prometheus,

the Prometheus scraper can reach your application using its container name

lightweather on port 3040. Copy this service discovery file to the Prometheus

configuration directory in the prometheus-prometheus-1 server container:

$ docker cp sd_lightweather.yml prometheus-prometheus-1:/prometheus

Using this file, the automatic service discovery you set up in Monitoring and

Alerting with Prometheus, on page 32, configures a new Prometheus target

for your application. Wait a few seconds, then check the new target in the

Prometheus web interface, as shown in the next image:

Because you’re using the same Prometheus instance, your new metric is

available in Grafana. Use the same procedure you used in Creating the

Grafana Dashboard, on page 68, to create a dashboard for the external tem-

perature, as shown in the picture on page 110.

report erratum • discuss

Containerizing and Deploying the App • 109

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

You can even combine the external temperature metric with the Pico W tem-

perature and create a single dashboard that contrasts both metrics, like this:

In addition to changing the light color, you could use Grafana to alert you

when the external temperature is too high or too low; for example, reminding

you to drain the garden hose when the temperature reaches near freezing.

Chapter 6. Lighting the Weather • 110

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Next Steps

You can now control your Hue lighting to visually represent changing moni-

tored values. Nice job! Imagine the other possibilities you can apply using

this approach. Set up a network monitor and flash your Hue lights on and

off while casting a red color anytime persistent network connections are

interrupted. Couple lighting triggers with the Chapter 5, Checking the (Garage)

Door, on page 75, project to automatically turn on a room light whenever

motion is detected. Connect to X (Twitter), Reddit, or other service APIs and

pulsate a representative color anytime those services have messages waiting

for you. Turn your home lighting into a sophisticated messaging center!

In the next chapter, we’ll build one of the neatest projects in the book for a

grand finale. See you there!

report erratum • discuss

Next Steps • 111

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

CHAPTER 7

Watching the Birds

Sometimes all you need to do to get inspiration for a project is step outside

for some fresh air and take a look around. If you have trees or bushes in your

yard, there are sure to be birds occasionally perching on them. Want to see

them up close? Then this project is tailored for just that purpose.

In exchange for some bird seed and a sheltered place to eat them, birds will

be ideal photographic subjects to point a Raspberry Pi camera at. Rather than

waiting around next to a bird feeder for a bird to land and strike the perfect

pose, use your Pi, a motion sensor, and some Go code to trigger the camera

when the bird approaches the feeder perch to trade their image for a free

meal. Automatically post these captured photos from your Pi to a Discord

channel where you and your channel subscribers can see the captured images

in near real time. Share the best images with friends, family, and even fellow

Go Home book readers like yourself.

Project’s Hardware Requirements

This project requires these components:

• Raspberry Pi: A Raspberry Pi 3 or higher to run the application.

• Raspberry Pi Camera Module:
a The Pi camera module is ideal since it already

takes advantage of the Pi’s onboard camera connector.

• Passive InfraRed (PIR) motion sensor:
b This inexpensive device has three leads:

power, ground, and signal. To connect these leads to the respective GPIO pins

on the Pi, you’ll also need three female-to-female jumper wires.

For more details, consult Adding Other Hardware Components, on page 7.

a. https://www.raspberrypi.com/products/camera-module-v2/
b. https://chicagodist.com/products/adjustable-infrared-pir-motion-sensor

report erratum • discuss

https://www.raspberrypi.com/products/camera-module-v2/
https://chicagodist.com/products/adjustable-infrared-pir-motion-sensor
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

In addition to the electronic components, you’ll also need a place to house

the project. A bird feeder is ideal as it offers an enclosure to contain the

hardware assembly while offering a trough and a perch where birds can feed.

You’ll have plenty of different feeders to choose from, ranging from inexpensive

clear plastic to elaborate and highly decorative designs. Choose the model

that most appeals to you while still having enough room and protection for

your hardware against the elements. Oh, and a few cups of birdseed will be

needed as well to help attract birds to the assembly.

By the end of this chapter, you’ll not only have a nice device to monitor wildlife,

but you’ll also have the skills required to use the Raspberry Pi camera module

in a variety of home projects.

With all those items in hand, you’re ready to assemble the hardware for the project.

Setting Up the Camera and InfraRed Sensor

On most Raspberry Pi models, the Pi’s camera connector is located near the

Ethernet and HDMI ports or, in the case of the Pi 4, between the HDMI USB-C

and A/V ports, and is labeled CAMERA on the board itself. To install the

camera, lift up the connector’s plastic clasp and insert the end of the camera’s

cable ribbon into it, with the ribbon’s contacts facing away from the clasp.

Once the cable is seated, push down on the clasp to lock the cable in place.

Verify that the camera is working by taking a test snapshot using the rpicam
tools that are included in the latest version of Raspberry Pi OS distribution.

Use the following syntax to take a snapshot.

$ rpicam-still -o capture.jpg

If you are running the Pi desktop connected to an HDMI monitor, verify that

the picture was taken by opening the capture.jpg file on the Pi itself. Otherwise,

copy the file to another computer to view it. If the image is missing or the rpicam-
still command displays an error, check that the camera cable ribbon is prop-

erly inserted, with all the ribbon contacts correctly seated, aligned, and

touching the intended contacts on the Pi. Proceed once you have successfully

captured an image with the camera.

libcamera

Older versions of Raspberry PI OS use the libcamera-apps package

to control the camera. If you have an older version of the OS, use

libcamera-still instead of rpicam-still to take the snapshot. In the new

OS version, libcamera-still is a link to rpicam-still, but since it has

been deprecated, we recommend using the new syntax instead.

Chapter 7. Watching the Birds • 114

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Now that the camera snapshots have been confirmed as working, it’s time to

attach the PIR sensor to the Pi. Using the female-to-female wires, connect the

PIR’s power pin to the Pi’s 5V pin located on the first row, second pin from

the left. Then connect the PIR’s ground (GND) lead to the Pi’s ground pin

located on the first row, third pin from the left. Finally, connect the PIR’s

signal (SIG) lead to the Pi’s GPIO 18 pin, located on the first row, sixth pin

from the left. Refer to the following wiring diagram for details.

And the picture on page 116 shows what the completed physical assembly

should look like.

With the hardware fully assembled and the Pi powered up, it’s time to write

some Go code to detect motion whenever you wave your hand near the PIR.

Writing the Software

Before sending photos, we need to make sure we can accurately detect any

movement with the PIR sensor. Fire up your code editor of choice and enter

this rudimentary Go program that calls upon the status of the Raspberry Pi’s

report erratum • discuss

Writing the Software • 115

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

GPIO pin 18 that we attached to the PIR signal (SIG) lead. Whenever a hand

or a bird wing waves near the PIR sensor, we should see a signal sent to the

Pi’s GPIO pin that we’re monitoring.

birdwatcher/motion/main.go

package main

import (
"fmt"
"os"
"time"

"github.com/stianeikeland/go-rpio/v4"
)

func main() {
pin := rpio.Pin(18)

if err := rpio.Open(); err != nil {
fmt.Println(err)
os.Exit(1)

}

defer rpio.Close()

pin.Input()
pin.PullUp()
pin.Detect(rpio.FallEdge)

fmt.Println("Sensing Enabled.")

for range time.Tick(500 * time.Millisecond) {
if pin.EdgeDetected() {

fmt.Println("Motion detected.")
}

}
}

Chapter 7. Watching the Birds • 116

report erratum • discuss

http://media.pragprog.com/titles/gohome/code/birdwatcher/motion/main.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Compile and execute the code via the usual Go run command.

$ go run main.go

With the code running, wave your hand near the PIR. If everything is connected

correctly and your code is successfully running, “Motion Detected” should

appear in the terminal’s output. Some PIR sensors can attenuate their sense

arc via a small screw on the PIR’s circuit board. Refer to the documentation

for your particular PIR. If you find the PIR a bit too sensitive due to the

Fresnel lens spreading out the detection arc too broadly, wrap a cone of paper

around it to prevent it from detecting motion, except when something moves

directly in front of the PIR sensor.

Now that our hardware is correctly set up, we can enhance our Go monitoring

program to call the external rpicam-still application that we used earlier to take

a picture using the attached Raspberry Pi camera. We also need a convenient

way to be notified that a motion detection event occurred, and copy that

captured image file to a location where it can be viewed. Luckily, a very pop-

ular, free online chat service will satisfy those requirements.

Sending Motion Notifications

Similar to how you created a Discord channel for the Garage Door project in

Sending Notifications, on page 80, create a new channel for this project on

your Discord server by selecting the + symbol to the right of the TEXT

CHANNELS label. In the pop-up, select the default #Text channel type, and

name the channel something apropos of the subject matter. In this case, call

the channel #birdwatcher. If you’re not ready to share your photos with the rest

of the world, you can also toggle on the Private Channel option so only you

can view the #birdwatcher channel on your Discord server. Your New Channel

dialog should look similar to the one shown in the image on page 118.

Select the Create Channel button to continue. If you selected the Private Channel

option, select Next to continue to the next screen to list groups and any sub-

scribers to your server you would like to grant access to the new #birdwatcher
channel. Select those groups or individuals you want to allow to see the cap-

tures and get notified from their Discord client anytime a new capture is

posted to the channel.

With the new #birdwatcher channel created and displayed in the TEXT CHAN-

NELS listing, select the sprocket icon to the right of the #birdwatcher label to

edit the channel. From this dialog box, select the Integrations menu item,

followed by clicking on the New Webhook button. Give the webhook a name like

report erratum • discuss

Sending Motion Notifications • 117

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Bird Watcher Webhook and then select the Save Changes button. This dialog should

look similar to the one shown in the next screenshot.

Chapter 7. Watching the Birds • 118

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Once you have saved your changes, select the Copy Webhook URL button to copy

the newly created webhook URL. This URL will be pasted as an environment

variable in our Go program as the address to post new motion notifications

and bird images.

With the active webhook URL ready for use, we now have all the pieces in

place to complete the Go code for this project, so let’s build the code listing.

Start your program by defining the main package and importing the required

libraries. These libraries include standard libraries such as net/http to call the

Discord webhook, mime/multipart to post pictures, as well as the go-rpio external

package to control the Pi’s GPIO.

birdwatcher/final/main.go

package main

import (
"bytes"
"fmt"
"io"
"mime/multipart"
"net/http"
"os"
"os/exec"
"path/filepath"
"time"

"github.com/stianeikeland/go-rpio/v4"
)

Next, add the main function as the starting point for your program. This func-

tion reads the Discord webhook URL from an environment variable DISCORD_
WEBHOOK_URL, starts the PIR sensor through the GPIO, and starts the infinite

loop that triggers the image capture when the sensor detects motion.

birdwatcher/final/main.go

func main() {
discordWebhookURL, ok := os.LookupEnv("DISCORD_WEBHOOK_URL")
if !ok {

fmt.Fprintln(
os.Stderr,
"'DISCORD_WEBHOOK_URL' env var is required",

)
os.Exit(1)

}

pin := rpio.Pin(18)

if err := rpio.Open(); err != nil {
fmt.Println(err)
os.Exit(1)

}

report erratum • discuss

Sending Motion Notifications • 119

http://media.pragprog.com/titles/gohome/code/birdwatcher/final/main.go
http://media.pragprog.com/titles/gohome/code/birdwatcher/final/main.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

defer rpio.Close()

pin.Input()
pin.PullUp()
pin.Detect(rpio.FallEdge)

fmt.Println("Sensing Enabled.")

perched := false

for range time.Tick(500 * time.Millisecond) {
if pin.EdgeDetected() {

if perched {
perched = false
continue

}

perched = true
fmt.Println("Bird Perched! Taking snapshot")

go captureSendImage(discordWebhookURL)
}

}
}

Now, define the function captureSendImage that captures the image, then sends it

to Discord. The main function calls this function as a goroutine asynchronously

when the PIR sensor detects motion. This function calls three other functions

and, if everything works, it deletes the picture file from the Pi at the end. If it fails

to send the picture to Discord, the file stays on the Pi so you can retrieve it later.

birdwatcher/final/main.go

func captureSendImage(discordWebhookURL string) {
capture, err := captureImage()
if err != nil {

fmt.Fprintln(os.Stderr, "Error capturing picture:", err)
return

}

multipartReq, err := newMultiPartRequest(capture, discordWebhookURL)
if err != nil {

fmt.Fprintln(
os.Stderr,
"Failed to create file multipart request:",
err,

)
return

}

if err := sendRequest(multipartReq); err != nil {
fmt.Fprintln(

os.Stderr,
"Capture failed to post to Discord channel:",

Chapter 7. Watching the Birds • 120

report erratum • discuss

http://media.pragprog.com/titles/gohome/code/birdwatcher/final/main.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

err,
)
return

}

fmt.Println("Capture posted to Discord channel")
os.Remove(capture)

}

Next, add the captureImage function. This function creates a temporary file with a

random name in the /tmp directory, then uses the rpicam-still program to capture the

image and save it to the temporary file. If everything works, it returns the file name.

birdwatcher/final/main.go

func captureImage() (string, error) {
output, err := os.CreateTemp("", "capture*.jpg")
if err != nil {

return "", err
}
output.Close()

cmd := exec.Command(
"rpicam-still",
"--width", "1024",
"--height", "768",
"-o", output.Name(),

)
if err := cmd.Run(); err != nil {

return "", fmt.Errorf("failed to capture image: %s", err)
}

return output.Name(), nil
}

Then, create the function newMultiPartRequest. This function returns an instance

of type http.Request which represents a request to be sent to an HTTP server,

in this case, your Discord webhook. Specify the body of the request; use the

multipart Go package to encode the captured picture file into the multipart/form-
data format that’s required to upload files to Discord.

birdwatcher/final/main.go

func newMultiPartRequest(path, discordWebhook string) (*http.Request, error) {
f, err := os.Open(path)
if err != nil {

return nil, err
}
defer f.Close()

body := bytes.Buffer{}
bodywriter := multipart.NewWriter(&body)

part, err := bodywriter.CreateFormFile(

report erratum • discuss

Sending Motion Notifications • 121

http://media.pragprog.com/titles/gohome/code/birdwatcher/final/main.go
http://media.pragprog.com/titles/gohome/code/birdwatcher/final/main.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

"multipart/form-data",
filepath.Base(f.Name()),

)
if err != nil {

return nil, err
}

io.Copy(part, f)
bodywriter.Close()

request, err := http.NewRequest(http.MethodPost, discordWebhook, &body)
if err != nil {

return nil, err
}
request.Header.Add("Content-Type", bodywriter.FormDataContentType())

return request, nil
}

Finally, define the function sendRequest that takes the http.Request instance

returned by the previous function and sends it to Discord.

birdwatcher/final/main.go

func sendRequest(request *http.Request) error {
client := http.Client{

Timeout: 10 * time.Second,
}

response, err := client.Do(request)
if err != nil {

return err
}
defer response.Body.Close()

if response.StatusCode != http.StatusOK {
return fmt.Errorf(

"invalid response from discord channel: %s",
response.Status,

)
}

return nil
}

Save the main.go file and run the program via the usual go run syntax. Set the

DISCORD_WEBHOOK_URL environment variable to your Discord webhook URL to

connect to Discord:

$ DISCORD_WEBHOOK_URL=<YOUR_DISCORD_WEBHOOK> go run main.go

Assuming no errors were reported during the compilation phase, your program

is now running and ready for testing. Wave your hand in front of the motion

sensor, and if everything works as expected, you should see a notification

Chapter 7. Watching the Birds • 122

report erratum • discuss

http://media.pragprog.com/titles/gohome/code/birdwatcher/final/main.go
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

pop up from your Discord client. Selecting the notification should direct you

to the #birdwatcher channel displaying the image just captured from the Rasp-

berry Pi camera attached to your Pi.

Congratulations! You’re almost ready to relocate the bird feeder from your

workbench to a tree in your yard. But before we deploy it, let’s place that

program into a container.

Containing the Application

Now it’s time to configure the program to run in an application container that

automatically starts when the Pi is freshly booted. If the program encounters

an error during execution, the container will automatically restart the program.

First, define a Dockerfile containing the instructions to create the image, like this:

birdwatcher/final/Dockerfile

FROM docker.io/golang:1.22 AS builder
RUN mkdir /app
WORKDIR /app
COPY . /app
RUN CGO_ENABLED=0 GOOS=linux GOARCH=arm64 go build \

-ldflags="-s -w" \
-o birdwatcher \
.

FROM docker.io/alpine:latest
RUN mkdir /app && adduser -h /app -D birdwatcher
WORKDIR /app
COPY --chown=birdwatcher --from=builder /app/birdwatcher .
ENTRYPOINT ["/app/birdwatcher"]

Then, create the container image using docker build:

$ docker build -t birdwatcher:v1 .

Ensure that everything worked by listing the images available:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
birdwatcher v1 5977327b2c37 About a minute ago 12.3MB

Then, run your container using docker run. Set the DISCORD_WEBHOOK_URL environ-

ment variable to your Discord webhook URL, and add the option --restart=always
to ensure the container starts automatically when you boot your Raspberry Pi:

$ docker run -d \
--name birdwatcher-v1 \
--env DISCORD_WEBHOOK_URL=<DISCORD_URL> \
--restart=always \
birdwatcher:v1

report erratum • discuss

Containing the Application • 123

http://media.pragprog.com/titles/gohome/code/birdwatcher/final/Dockerfile
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

If everything is working, you can test it by waving your hand in front of the

PIR sensor and checking the picture appears on Discord. You’re ready to

deploy your bird feeder outside.

Configuring the Bird Feeder

Depending on the type of bird feeder you use for the project, you may need to

get creative with safely securing the Pi and Pi camera inside the feeder. For

example, if the feeder has a removable roof, see if you can create a makeshift

shelf to slide the Pi into it. If there’s not enough room to do so, you can place

the Pi in a ziplock bag and pour seeds around it. This isn’t ideal, since the Pi

does generate heat that the bag could impede dissipating. Regardless of your

configuration, you want to make sure to shield the Pi from moisture and heat,

as either of these extremes will permanently damage your Pi hardware.

Position the camera to face outward toward the feeder’s feeding trough. If

multiple troughs exist, seal them with tape to prevent seeds from dispensing

from them. This way, the only trough dispensing seeds is the one that has

the camera facing the trough’s respective perch. Position the PIR sensor to

focus on the direction birds will likely arrive from, and power up the Pi, as

shown in the next image.

Chapter 7. Watching the Birds • 124

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

The birdwatcher Go application’s container will start up and be ready for testing.

Wave your hand in front of the PIR and, within a couple seconds, depending

on your Internet connection speeds, you should see the photo show up on

your assigned Discord channel. Once you’re satisfied with the results, mount

the feeder in an ideal spot where birds will likely visit. Be careful not to posi-

tion the feeder where there might be leaves that rustle and branches that

sway in the wind, as this motion will set off the PIR sensor, and your Discord

feed will be flooded with photos. Depending on how far your exterior power

plug may be from the feeder’s mount, you may require an outdoor extension

cord to connect the Pi’s power supply.

Take extra precautions to shield the power supply from moisture or direct

sunlight. Also, be aware of the Pi’s operating temperatures. It’s not advisable

to operate the Pi’s CPU in temperatures below minus 40 degrees Celsius (same

as Farhenheit) or exceeding 85 degrees Celsius (185 degrees Fahrenheit), so

don’t deploy the Pi-connected bird feeder in these situations where the CPU

could freeze or overheat in these kinds of extreme operating environments,

as shown in the next picture.

With all your hard work and preparation completed, it’s time to enjoy the

fruits of your labor. Watch as the Discord alerts pop up on your phone or

computer showing pictures of our happy feathered friends showing their

appreciation for your generosity by posing for the camera. Depending on the

species of bird, you may need to modify the position and angle of the camera

to capture the ideal portrait, such as shown in the photo on page 126.

report erratum • discuss

Configuring the Bird Feeder • 125

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

It may take a couple of tweaks to set the camera position in the ideal spot,

but once done, you should have some remarkable bird photos to share. Invite

other bird enthusiasts to your Discord channel where they too can see the

bird images you captured in real time with your Go-based Bird Feeder project!

Next Steps

Now that you know how to use the Raspberry Pi camera, post images to a

dedicated Discord channel, and detect motion using a PIR sensor, you can

combine these skills into a whole variety of solutions. Relocate your bird

feeder or set up different types of feeders to attract other forms of wildlife,

like the cute baby rabbit in this picture:

Chapter 7. Watching the Birds • 126

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Or the selfie-posing squirrel in the following picture:

Assemble your own security system with motion detection alerts. Turn on

lights whenever someone enters the room, and turn them back off after no

motion is detected after a certain period of time. Create a whole unique

workflow to trigger sights and sounds for a Halloween decoration, turning on

and off electric motors to move costumed figures whenever a trick or treater

crosses its path.

report erratum • discuss

Next Steps • 127

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

CHAPTER 8

Go Build

Nice job on completing the projects in this book! You now have a foundation

to build more sophisticated home automation solutions. You can also improve

your computing infrastructure to support even more robust capabilities such

as virtualization, container orchestration, and even more effective monitoring

and security. In addition, you can expand your knowledge of hardware via

the variety of sensors and actuators that you connect to, measure, and control

from your Raspberry Pi via Go code. Let’s explore these ideas further.

Designing Additional Projects

Now that you know how to control appliances and monitor their changes via

your own API calls, you can expand upon this framework to do even more

interesting and complex solutions. Here are a few ideas to consider:

• Control your coffee machine: set up timers or motion sensors to trigger

brewing times. Add a temperature sensor to your coffee pot that will alert

you when your coffee has reached the perfect drinking temperature as

well as when it’s too cold to enjoy.

• Control other devices in your home: manage power outlets, web cameras,

audio speakers, and other electrical appliances via Hue hub commands

and image-capturing capabilities.

• Bring holiday decorations to life: turn a static skeleton into a dancing

ghoul for Halloween, triggered anytime motion is detected. Take reaction

photos and display them via a projector against a white sheet near the

figure. Make winter holiday trees and lighting sparkle and pulse in time

with music. Control a model train to deliver gifts and holiday announce-

ments to visiting friends and family.

report erratum • discuss

http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

The most rewarding part of building your own solution is seeing your ideas

literally come to life and easing the burden of what was once a laborious or

time-consuming task. Think about the various electronics and workflows in

your own home, and how these devices and interactions can be improved

with automation.

Expanding the Technologies

The Raspberry Pi hardware is remarkably flexible for a variety of computing

tasks, as this book’s own projects have demonstrated. However, as you con-

tinue to expand your automation solutions and begin to tax the Pi’s processor

beyond its capabilities, consider upgrading your server infrastructure to a

more powerful and scalable solution. Mini PCs such as those from Asus,

Geekom, Minisforum and others offer relatively inexpensive PCs that easily

double as servers capable of hosting multiple virtual machines.

One of the most popular open source on-prem virtual machine (VM) hosting

solutions is Proxmox.1 Proxmox will allow your PC to run and manage multiple

x86-based virtual machines, allowing you to partition each server for a dedi-

cated task. For example, one server could be used to run a Kubernetes cluster,

while another could manage your messaging and alerting infrastructure. Of

course, you could use an army of Pi’s to do the same thing, but the ease of

having multiple machines in a single, small package makes portability and

equipment management much easier.

As an alternative to virtualization, you can continue to run your workloads

as containers but spread and coordinate them across multiple machines. In

this book, we used Docker Compose to run our containers. Docker Compose

works just fine on a single device, but what happens when you need to run

multiple instances of a container across different devices? What about when

you have dozens of different containers to manage? This is where a Container

Management solution like Kubernetes2 comes to the rescue.

Kubernetes is a very flexible and scalable container orchestration platform

that helps meet these objectives. Learning Kubernetes can be a bit daunting

at first, as there are a lot of new ideas and technologies running under its

hood. But once you have deployed and begun experimenting with your own

Kubernetes cluster, managing and understanding its complexities becomes

much easier.

1. https://www.proxmox.com
2. https://kubernetes.io/

Chapter 8. Go Build • 130

report erratum • discuss

https://www.proxmox.com
https://kubernetes.io/
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Raspberry Pi 4s and higher are good starter hardware for running your own

home-based Kubernetes cluster. Many approaches and distributions exist,

but we have found the ones best optimized for the Pi are:

• K3s3

• MicroK8s4

• k0s5

While setting up a Kubernetes cluster using any of these distributions is

beyond the scope of this book, doing so is relatively easy following the simple

step-by-step instructions in each project’s installation documentation. And

regardless of which hardware platform you use (a Pi or an x86 Proxmox-

configured VM), Kubernetes can run on either of these operating systems

because, like the other open source tools presented in this book, Kubernetes

is written in Go!

In addition to the management platform, you can also improve the monitoring

stack. Your on-prem Prometheus and Grafana instances provide a stable,

scalable metrics and alert management configuration for monitoring your

home automation solutions. However, there may be times when you want

easier access to your dashboard.

Grafana offers a free, hosted tier of their enterprise edition that’s perfect for

home lab and automation enthusiasts. In addition to the same capabilities

found in their on-prem open source version, Grafana Cloud provides additional

alert and incident management capabilities. These include their OnCall inci-

dent response plug-in (great for being notified that a service in your home is

either offline or operating outside of normal ranges), Loki for managing

application and system logs, and Tempo for analyzing more granular applica-

tion trace activity. Configuring your existing on-prem Prometheus server to

work with Grafana Cloud only takes a few steps. And once your metrics are

in their secure cloud, you no longer have to be concerned with updates,

backups, availability, and integrations since Grafana Cloud takes on those

responsibilities for you.

Improving Security

Depending on how much you rely on your Internet service provider’s equip-

ment and whether or not you lease your home router from them, you may

not have to worry about security as much as InfoSec professionals do at large

3. https://k3s.io/
4. https://microk8s.io/
5. https://k0sproject.io/

report erratum • discuss

Improving Security • 131

https://k3s.io/
https://microk8s.io/
https://k0sproject.io/
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

enterprises. Nevertheless, good security practices are always beneficial and

can apply whether you have one or one thousand servers. Since your Rasp-

berry Pi(s) will most likely be running 24x7x365, they can be vulnerable to

the same flaws and exploits that other Linux distributions are dealing with.

That’s why it’s important to keep your Pi(s) patched with the latest updates to

the various applications and components that make up the operating system.

If you’re running Raspberry Pi OS on your Pi(s), logging into the Pi and running

sudo apt update followed by sudo apt upgrade will keep your Pi(s) up to date. Manu-

ally applying this operation can get tiresome, but open source configuration

management tools like Ansible6 will help ease the burden of applying updates.

Ansible can do a lot more than just patching your Pi’s, as it supports Windows

and Mac OSs and can do everything from setting up and configuring new systems

to simultaneously installing an application on multiple servers. While setting

up and managing an Ansible server is outside the scope of this book, reading

the documentation7 is a great way to start learning and even implementing

your own Ansible server and customize it for your home lab and network.

Another way to improve your network security is by using trusted certificates

to encrypt communications between your computers, mobile devices, and

your servers, including your Raspberry Pi’s. One of the most popular, free,

non-profit TLS certificate minting services used by individuals and large

companies alike is Let’s Encrypt.8

Unlike your own self-signed certificates, Let’s Encrypt’s root certificate is

already installed in nearly every popular web browser and OS. This makes it

much easier to securely communicate with your web services on your network

since you don’t have to bypass scary browser security screens and program-

matically set TLS communication settings to Insecure when establishing secure

channels between machines.

Let’s Encrypt can be slightly more work when minting your own certificates

behind a firewall. It can be done manually or via automation scripts as long

as you have access to editing the DNS records of a domain name. While a full

discussion on how to do this is beyond the scope of this book, you can learn

more about the process by searching online for step-by-step instructions,

such as those provided by blogger Akshay Jaggi9 for minting and deploying

Let’s Encrypt certificates within local area networks and home labs.

6. https://www.ansible.com/
7. https://docs.ansible.com/ansible/latest/getting_started/index.html
8. https://letsencrypt.org/
9. https://akshay.jaggi.co/blog/lan-certs/

Chapter 8. Go Build • 132

report erratum • discuss

https://www.ansible.com/
https://docs.ansible.com/ansible/latest/getting_started/index.html
https://letsencrypt.org/
https://akshay.jaggi.co/blog/lan-certs/
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Advancing Electronics

With your home lab infrastructure built out and secured, it’s time to incorpo-

rate more sophisticated autonomous interactions with objects in your home.

The GPIO pins on all the Pi models allow an extensive array of sensors and

actuators to be connected and controlled. Sensors range from simple motion

detection to more elaborate environmental monitors such as carbon monoxide

sensors and water leakage sensors. Actuators, better known as motors, can

drive everything from opening doors and drawing window shades to mobilizing

robotic vehicles that can autonomously provide home surveillance while you

are away.

You could buy these components separately on an as-needed basis, but it

may be more cost-effective and creative to buy a starter kit bundled with a

mix of electronics from vendors like Amazon10 or Sparkfun.11 You’ll also need

to know a bit more about basic electronics, how to identify types of capacitors

and resistors, and wiring and soldering. There are numerous tutorials and

streaming videos on this subject, such as courses from Open University12

and YouTube.13 Once you understand the basics, you’ll be able to build

highly personalized solutions that specifically meet your needs and vision of

the perfect home automation solution.

Having Fun

While having all this knowledge and technology at your disposal is required

for a computationally sophisticated home automation environment, the most

important takeaway from this book is to have fun building and maintaining

your projects. Much like hobbyists who enjoy painting miniatures and display-

ing them, home lab tinkerers enjoy designing, building, and executing their

own creations. Nothing is more satisfying and empowering than bringing an

innovative, unique idea to life, and then benefiting from the improvement

made to your home as a result. So have fun making great projects of your

own, and share your discoveries, inventions, and learnings with others online!

10. https://www.amazon.com/KEYESTUDIO-Sensor-Arduino-Raspberry-Micro/dp/B016KIXSMM/ref=sr_1_3
11. https://www.sparkfun.com/products/21301
12. https://www.open.edu/openlearn/science-maths-technology/an-introduction-electronics/content-section-0
13. https://www.youtube.com/results?search_query=basic+electronics+for+beginners

report erratum • discuss

Advancing Electronics • 133

https://www.amazon.com/KEYESTUDIO-Sensor-Arduino-Raspberry-Micro/dp/B016KIXSMM/ref=sr_1_3
https://www.sparkfun.com/products/21301
https://www.open.edu/openlearn/science-maths-technology/an-introduction-electronics/content-section-0
https://www.youtube.com/results?search_query=basic+electronics+for+beginners
http://pragprog.com/titles/gohome/errata/add
http://forums.pragprog.com/forums/gohome

Index

A
alerts, see notifications

Analog-Digital Converter
(ADC) controller and temper-
ature calculation, 49

Ansible, 132

API key, OpenWeather, 94,
105, 107

API Tester, 58

applications
deploying with Linux

containers, 25–27
restarting, automatic,

18, 22, 28, 66

architectures
environment variable for,

19, 90
listing, 19

B
batteries, 73

bird feeders and bird watch-
ing project, 114, 124–126

bird watching project, 113–
126

containerizing, 123
hardware for, 7, 113
hardware setup, 114–115
image capture, 119–123
notifications, 117–123
in personal data center

diagram, 4
positioning camera and

birdfeeder, 124–126
software, building, 115

BOOTSEL button, 47

build (Go), 19, 21

build (TinyGo), 57

C
-c option for alternative config

file, 107

caching, metrics, 61

camera
about, 7, 113
bird watching project,

about, 113
bird watching project,

image capture, 119–
123

bird watching project,
positioning, 124–126

bird watching project,
setup, 114

connecting, 114
snapshot command, 114

certificates, trusted, 132

CGO_ENABLED environment
variable, 19

cgroups, 26

channels
buffered, 101
temperature monitor

project, 54
weather light project, 101

channels, Discord, creating,
80, 117

cmdresult, creating, 16

code
source code for this book,

xiii
source code,managing

with Gitea, 25, 27–32

code editors
selecting, 11
setup, 11–14

coffee machine project ideas,
129

Collinux, 97

colors
assigning to bulbs, 7
lightstrips, 7, 96

compiling, see also TinyGo
cross compilation, 9
with embed, 59
options for, listing, 19
REST API server, 19

config.yml file, mounting to
containers, 90, 107

configuring
-c option for alternative

config file, 107
software, general setup,

8–11

container images
bird watching project,

123
creating, 20
defined, 20
door project, 90
listing, 66
temperature monitor

project, 65–67
weather light project,

106–108

container management sys-
tems, 26, 130

containers
advantages, 18
automatic restart and,

18, 22, 28, 66

bird watching project,
123

deploying applications
with Linux containers,
25–27

door project, 90
GPIO access and, 91
listing last container cre-

ated, 66
multi-stage, 20
REST API server, 18–22
running, 21, 90
running in detached

mode, 28
running multiple, 27
running on multiple ma-

chines, 130
running server container

as a service, 22
temperature monitor

project, 65–67
weather light project,

106–108

cp (Docker), 36

credentials
connecting Pico W to Wi-

Fi, 49
Hue User ID, 97

cyw43439 driver, 49

D
-d option, 28

dashboards
creating, 68
setup, 38–40
temperature monitor

project, 68–73

data collection, 4, 133, see

also metrics

databases, Gitea setup, 27

--device option, 90

diagrams
personal data center dia-

gram, 4
rendering with Mermaid,

5

Discord
about, 80
bird watching project,

113, 117–123
channels, creating, 80
door project notifications,

75, 80–89
in personal data center

diagram, 4

DISCORD_WEBHOOK_URL environ-
ment variable, 89, 119, 122

Docker, see also containers;
container images

advantages, 9
listing projects, 29, 66
managing Linux contain-

ers, 26–40
setup, 10
versions, 9

Docker Compose
about, 11
managing Linux contain-

ers, 27–40
multiple devices and, 130
version, 11

Docker Network, running
multiple containers, 27

door project, 75–92
code, building, 82–89
configuring and testing,

89
containerizing and deploy-

ing, 90
hardware for, 75
hardware setup, 75–78
notifications, 75, 80–89
in personal data center

diagram, 4
querying door state, 89
security, 81

Downs, Brian, 95

E
-e option, exposing environ-

ment variables with, 90,
107

embedding, compiler and, 59

encryption and trusted certifi-
cates, 132

ENTRYPOINT (Docker), 107

environment variables
exposing with -e option,

90, 107
specifying, 19
webhook URLs, 81, 89

errors
temperature monitor

project, 54
weather light project, 101

exporters
about, 32
configuring Prometheus

to query, 66–67
descriptive web page for,

100
setup, 32–38

temperature monitor
project, 58–67

weather light project, 99–
103

F
-f option, 28

Feldman, Scott, 49

female-to-female jumper
wires, see jumper wires

Fiber, 16

files
copying to paths, 36
specifying in Docker

Compose, 28

fmt library, 16

formats, supplying automati-
cally, 79

G
General Purpose Input/Out-

put, see GPIO

Gin, 16

Gitea
about, 25
base URL, 29
in personal data center

diagram, 4
setup, 27–32

GitHub, see Gitea

Go, see also TinyGo
advantages, xi, 3
cross compilation and, 9
parsing with Treesitter,

12
resources on, xiii
versions, 9

Go Brain Teasers, xiii

go-rpio package, 79, 119

go.nvim plugin, 12

GOARCH environment variable,
19, 90

gohue library, 97

GOOS environment variable,
19

goroutines, 101

GPG key, 10

GPIO
about, 75
bird watching project, PIR

sensor, 119
configuring pins as input

vs. output, 77
door project code, 82–89
initializing, 84

Index • 136

magnetic contact switch,
coding, 78–80

Pull Up/Pull Down resis-
tors, 77, 80

sensor and actuator op-
tions, 133

solderless pin headers
for, 75

uses, 76
wiring magnetic contact

switch to, 77

Grafana
about, 25, 38
Cloud version, 131
notifications, 70–73
in personal data center

diagram, 4
setup, 38–40
temperature monitor

project, 68–73
weather light project, 99,

109–110

graphs, Prometheus, 37

H
hardware

setup, 6–8
soldering and, xiii

holiday project ideas, 129

home automation, see al-

so projects
GPIO uses, 76
personal data center dia-

gram, 4
project ideas, 129
uses, 3

HTML template, weather light
project, 99

HTTP
door project, 87, 89
initializing server, 17
packages for, 16
REST API server, build-

ing, 15–18
temperature monitor

project, 51, 54, 62
weather light project,

101, 108

HTTP server
bird watching project,

121
door project, 87
temperature monitor

project, 62
weather light project, 101

Hue base station
about, 93, 96

configuring, 97
weather light project, 93,

96–110

Hue Bridge, 7

Hue libraries, 97

Hue Lightstrip Plus Base Kit,
7

Hue Starter Kit, 7

HUE_ID environment variable,
98

HUE_IP_ADDRESS environment
variable, 98

I
infrared sensor, passive,

see PIR (passive infrared
sensor)

inspect (Docker), 22

IP addresses
obtaining automatically,

49
Pico W, 58

J
Jaggi, Akshay, 132

JSON
converting in temperature

monitor project, 54,
58–61

encoding library, 16, 54
packaging with REST API

server, 15–18

jumper wires
about, 8, 75
PIR (passive infrared sen-

sor), 113, 115
wiring magnetic contact

switch to GPIO, 77

K
k0s, 131

K3s, 131

kits, 133

Kubernetes, 130

L
Let’s Encrypt, 132

libcamera-apps package, 114

lights, see also weather light
project

assigning to bulbs, 7
blinking for temperature

monitor project, 54–57

changing LED state for
temperature monitor
project, 52

Hue Starter Kit, 7
lightstrips, 7, 93, 96–111
refreshing, 108
turning on, 98
uses, 111

lightstrips
about, 7, 93
determining color range,

96
uses, 111
weather light project, 96–

110

Linux containers, 25–27

LLVM, 9

locking structs, 61

log/slog library, 51

logs
libraries for, 51
memory and, 52
monitoring with TinyGo,

52, 57
temperature monitor

project, 51
weather light project, 101

Loki, 131

ls (Docker), 29, 66

M
machine library, 48, 51

magnetic contact switch
about, 7, 75
coding, 78–80
door project, 75, 77–80
uses, 92
wiring diagram, 78
wiring to GPIO, 77

memory
empty structs, 101
logs and, 52
temperature monitor

project, 55

Mermaid, 5

metrics, see also Prometheus
about, 25
caching, 61
Grafana dashboard, 68–

73
setup, 32–38
temperature monitor

project setup, 58–67

Index • 137

visualizations with
Prometheus graphs, 37

weather light project,
107–110

microcontrollers
Pico W, 6
temperature monitor

project, 7
TinyGo and, 9

MicroK8s, 131

mime/multipart library, 119

monitor (TinyGo), 52, 57

motion detection, see also PIR
(passive infrared sensor)

bird watching project,
113–126

project ideas, 129
uses, 126

N
namespaces

Linux containers and, 26
Prometheus exporters

and, 35

Neovim, 11

net/http package, 16, 62

Node Exporter Full, 39

node exporters, see exporters

notifications
about, 25
door project, 75, 80–89
with Grafana Cloud, 131
in personal data center

diagram, 4
setup, 32–38
temperature monitor

project, 45, 70–73
weather light project, 110

O
OnCall, 131

OpenWeather, weather light
project setup, 94–96

openweathermap package, 95

operating systems
configuring, 8
environment variable for,

19
listing, 19

os/exec library, 16

OWM_API_KEY environment vari-
able, 105

P
-p option, exposing ports with,

90

passive infrared sensor,
see PIR (passive infrared
sensor)

paths
copying files to, 36
declaring, 17

personal data center
about, xi, 4
diagram, 4
REST API server, build-

ing, 15–23
setup, 4–14, 25–41

Pi Pico W, see Raspberry Pi
Pico W

Pi Zero, see Raspberry Pi Zero
2 W

PICO_SERVER_URL environment
variable, 66

pins, see also GPIO
configuring as input vs.

output, 77
layouts, 76
safety and, 76
sensor and actuator op-

tions, 133
solderless headers for, 8,

75, 77

PIR (passive infrared sensor)
about, 7, 113
bird watching project,

about, 113
bird watching project,

positioning, 124–126
bird watching project,

setup, 114–115
connecting, 115
motion detection, 115
operating temperatures,

125
uses, 126
wiring diagram, 115

Podman, 20, 22, 26

polling
about, 32
temperature monitor

project, 48–49

ports
exposing with -p option,

90
Gitea setup, 27, 29, 32
Grafana, 38
HTTP server, 17, 64, 66,

101

Prometheus, 36
SSH, 29, 32
TCP, 53

PostgreSQL, Gitea setup, 27

Postman on the Desktop, 58

power switches, Hue Starter
Kit, 7

Powerful Command-Line Appli-

cations in Go, xiii

projects, see also bird watch-
ing project; door project;
temperature monitor
project; weather light
project

code editors for, 11–14
creating in Go, 16
hardware, setup, 6–8
ideas for, 129
personal data center, dia-

gram, 4
personal data center, set-

up, 4–14, 25–41
REST API server, build-

ing, 15–23
software, setup, 8–11

promauto package, 62

Prometheus
about, 25, 32
configuration file, 33
configuring to query ex-

porters, 66–67
Grafana Cloud and, 131
Grafana setup, 38–40
graphs, 37
naming conventions, 58
setup, 32–38
temperature monitor

project, 58–67
temperature monitor

project setup, 58–67
weather light project, 99–

103, 107–110

prometheus_prom_net network,
107

promhttp package, 62

Proxmox, 130

Pull Up/Pull Down resistors,
77, 80

R
Raspberry Pi

about, 6
selecting models, 6
updating, 132

Raspberry Pi 3 Model B+, 6

Raspberry Pi 4B, 6

Index • 138

Raspberry Pi 5, 6

Raspberry Pi Camera Module,
see camera

Raspberry Pi Camera Module
2, 7

Raspberry Pi OS
32 vs. 64 bits, 8
configuring, 8

Raspberry Pi Pico W
about, 46
batteries and, 73
changing LED state, 52
connecting to Wi-Fi, 49
setup, 46–48
temperature calculation,

49
temperature monitor

project, 7, 45
temperature polling, 48–

49
transferring images to, 47
uses, 6
Wi-Fi driver for, 46, 49,

53

Raspberry Pi Zero 2 W
about, 75
configuring, 6
door project, 75–92
solderless pin headers

for, 8, 75, 77

repositories, see Gitea

Representational State
Transfer, see REST API
server

resistors, Pull Up/Pull Down,
77, 80

REST API server
building, 15–23
compiling, 19
containerizing, 18–22
packages for, 16
in personal data center

diagram, 4
running container as a

service, 22
temperature monitor

project, 48, 51–58
weather light project, 94

--restart, 22

restarting applications, auto-
matic, 18, 22, 28, 66

root route, door project, 87

rpicam package, 114, 121

run (Docker), 21–22

S
safety, pins and, 76

scraping, see polling

security
Discord channels, 81
door project, 81
improving, 131–132
REST API server and, 16
strings in webhook URLs,

81
trusted certificates, 132
weather light project,

105, 107

seqs/httpx library, 51, 54

seqs/stacks library, 51–58

servers, see also REST API
server

calling path from brows-
er, 17

initializing, 17
Pico W Server URL, 64

software, general setup, 8–11

soldering, about, xiii

solderless pin headers, 8, 75,
77

SSH, Gitea setup, 29, 32

Stringer interface, 79

strings, formatting with fmt li-
brary, 16

struct keyword, 16

structs
{}{} syntax, 101
JSON handling, 16
locking/unlocking, 61
memory and empty

structs, 101

switch (Go), 96

Systemd, 22

T
TCP stack, temperature mon-

itor project, 51–58

temperature, see also temper-
ature monitor project;
weather light project

calculation by Pico W, 49
heat fluctuations and

temperature sensors,
48

PIR (passive infrared sen-
sor) operating tempera-
tures, 125

project ideas, 129

temperature monitor project,
45–73

about, 45
blinking lights, 54–57
connecting Pico W to Wi-

Fi, 49
containerizing and deploy-

ing, 65–67
Grafana dashboard, 68–

73
hardware for, 7, 45
in personal data center

diagram, 4
polling temperature, 48–

49
Prometheus setup, 58–67
Raspberry Pi Pico W, set-

up, 46–48
REST API server, creat-

ing, 48, 51–58

Tempo, 131

timeouts, 64

TinyGo
about, 9
compiling programs into

UF2 image, 46, 57
machine library, 48, 51
monitoring with, 48
Wi-Fi driver for Pico W,

46, 49, 53

Treesitter, 12

trusted certificates, 132

U
UF2 files, 46, 57

unlocking structs, 61

updates, 132

URLs
Gitea base URL, 29
Pico W Server URL, 64
webhooks, 81, 89

V
-v option, mounting configura-

tion file, 90, 107

virtual machines, 130

Visual Studio Code, 11, 13

visualizations
Grafana setup, 38–40
Prometheus graphs, 37
temperature monitor

project, 45, 68–73
weather light project,

109–110

Index • 139

W
weather light project, 93–111

code, building, 98–103
configuring application

settings, 103–106
containerizing and deploy-

ing, 106–108
determining color range,

96
hardware for, 7, 93
metrics, 107–110
OpenWeather setup, 94–

96

in personal data center
diagram, 4

polling, 94–96
refreshing lights, 108
visualizations, 109–110

webhooks
bird watching project,

117–123
door project notifications,

81–89

Whittingslow, Patricio, 49

Wi-Fi
connecting Pico W to, 49
credentials, 49
driver for Pico W, 46, 49,

53
temperature monitor

project setup code, 53–
58

Y
yaml file, Linux containers,

27, 34

yaml.v3 package, 82

Index • 140

Thank you!
We hope you enjoyed this book and that you’re already thinking about what

you want to learn next. To help make that decision easier, we’re offering

you this gift.

Head on over to https://pragprog.com right now, and use the coupon code

BUYANOTHER2024 to save 30% on your next ebook. Offer is void where

prohibited or restricted. This offer does not apply to any edition of The

Pragmatic Programmer ebook.

And if you’d like to share your own expertise with the world, why not propose

a writing idea to us? After all, many of our best authors started off as our

readers, just like you. With up to a 50% royalty, world-class editorial services,

and a name you trust, there’s nothing to lose. Visit https://pragprog.com/become-
an-author/ today to learn more and to get started.

Thank you for your continued support. We hope to hear from you again

soon!

The Pragmatic Bookshelf

SAVE 30%!

Use coupon code

BUYANOTHER2024

https://pragprog.com
https://pragprog.com/become-an-author/
https://pragprog.com/become-an-author/

Portable Python Projects
Discover easy ways to control your home with the

powerful new Raspberry Pi hardware. Program short

Python scripts that will detect changes in your home

and react with the instructions you code. Use new add-

on accessories to monitor a variety of measurements,

from light intensity and temperature to motion detec-

tion and water leakage. Expand the base projects with

your own custom additions to perfectly match your

own home setup. Most projects in the book can be

completed in under an hour, giving you more time to

enjoy and tweak your autonomous creations. No

breadboard or electronics knowledge required!

Mike Riley

(180 pages) ISBN: 9781680508598. $45.95

https://pragprog.com/book/mrpython

Powerful Command-Line Applications in Go
Write your own fast, reliable, and cross-platform com-

mand-line tools with the Go programming language.

Go might be the fastest—and perhaps the most

fun—way to automate tasks, analyze data, parse logs,

talk to network services, or address other systems re-

quirements. Create all kinds of command-line tools

that work with files, connect to services, and manage

external processes, all while using tests and bench-

marks to ensure your programs are fast and correct.

Ricardo Gerardi

(508 pages) ISBN: 9781680506969. $45.95

https://pragprog.com/book/rggo

https://pragprog.com/book/mrpython
https://pragprog.com/book/rggo

Distributed Services with Go
This is the book for Gophers who want to learn how

to build distributed systems. You know the basics of

Go and are eager to put your knowledge to work. Build

distributed services that are highly available, resilient,

and scalable. This book is just what you need to apply

Go to real-world situations. Level up your engineering

skills today.

Travis Jeffery

(258 pages) ISBN: 9781680507607. $45.95

https://pragprog.com/book/tjgo

Effective Go Recipes
Programmers love Go because it is lightweight, easy

to work with, and easy to read. Go gives you the bene-

fits of dynamically typed languages (speed of develop-

ment) while keeping the upsides of strongly typed lan-

guages (security and performance).

Go is a simple language, but programming in Go is

about more than just mastering syntax. There’s an art

to using Go effectively. Squeeze out the full use of ad-

vanced networking and multi-core power for which Go

was designed. Save precious coding hours with recipes

that help you manage objects, collect garbage, and

safely use memory. Tackle Unicode, concurrency, and

serialization with ease.

Miki Tebeka

(276 pages) ISBN: 9781680508468. $53.95

https://pragprog.com/book/mtgo

https://pragprog.com/book/tjgo
https://pragprog.com/book/mtgo

Raspberry Pi: A Quick-Start Guide (2nd edition)
The Raspberry Pi is one of the most successful open

source hardware projects ever. For less than $40, you

get a full-blown PC, a multimedia center, and a web

server—and this book gives you everything you need

to get started. You’ll learn the basics, progress to con-

trolling the Pi, and then build your own electronics

projects. This new edition is revised and updated with

two new chapters on adding digital and analog sensors,

and creating videos and a burglar alarm with the Pi

camera.

Maik Schmidt

(176 pages) ISBN: 9781937785802. $22

https://pragprog.com/book/msraspi2

Arduino: A Quick-Start Guide, Second Edition
Arduino is an open-source platform that makes DIY

electronics projects easier than ever. Gone are the days

when you had to learn electronics theory and arcane

programming languages before you could even get an

LED to blink. Now, with this new edition of the best-

selling Arduino: A Quick-Start Guide, readers with no

electronics experience can create their first gadgets

quickly. This book is up-to-date for the latest Arduino

boards and for Arduino 1.x, with step-by-step instruc-

tions for building a universal remote, a motion-sensing

game controller, and many other fun, useful projects.

Maik Schmidt

(322 pages) ISBN: 9781941222249. $34

https://pragprog.com/book/msard2

https://pragprog.com/book/msraspi2
https://pragprog.com/book/msard2

Build Talking Apps for Alexa
Voice recognition is here at last. Alexa and other voice

assistants have now become widespread and main-

stream. Is your app ready for voice interaction? Learn

how to develop your own voice applications for Amazon

Alexa. Start with techniques for building conversational

user interfaces and dialog management. Integrate with

existing applications and visual interfaces to comple-

ment voice-first applications. The future of human-

computer interaction is voice, and we’ll help you get

ready for it.

Craig Walls

(388 pages) ISBN: 9781680507256. $47.95

https://pragprog.com/book/cwalexa

Essential 555 IC
Learn how to create functional gadgets using simple

but clever circuits based on the venerable “555.” These

projects will give you hands-on experience with useful,

basic circuits that will aid you across other projects.

These inspiring designs might even lead you to develop

the next big thing. The 555 Timer Oscillator Integrated

Circuit chip is one of the most popular chips in the

world. Through clever projects, you will gain permanent

knowledge of how to use the 555 timer will carry with

you for life.

Cabe Force Satalic Atwell

(104 pages) ISBN: 9781680507836. $19.95

https://pragprog.com/book/catimers

https://pragprog.com/book/cwalexa
https://pragprog.com/book/catimers

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by professional developers for professional

developers. The titles continue the well-known Pragmatic Programmer style and continue

to garner awards and rave reviews. As development gets more and more difficult, the Prag-

matic Programmers will be there with more titles and products to help you stay on top of

your game.

Visit Us Online
This Book’s Home Page

https://pragprog.com/book/gohome
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up-to-Date

https://pragprog.com
Join our announcement mailing list (low volume) or follow us on Twitter @pragprog for new

titles, sales, coupons, hot tips, and more.

New and Noteworthy

https://pragprog.com/news
Check out the latest Pragmatic developments, new titles, and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are

available from your local independent bookstore and wherever fine books are sold.

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

https://pragprog.com/book/gohome
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Introduction
	Who This Book Is For
	What’s in This Book
	About the Hardware
	About the Code
	Online Resources

	Part I—Setup
	1. Getting Started
	Your Personal Data Center
	Selecting a Raspberry Pi
	Adding Other Hardware Components
	Configuring the Software
	Picking a Code Editor
	Next Steps

	2. Building a REST API Server
	Writing the Code
	Containing the Server
	Next Steps

	3. Deploying Your Personal Data Center
	Deploying Applications with Linux Containers
	Managing Source Code with Gitea
	Monitoring and Alerting with Prometheus
	Visualizing Data with Grafana
	Next Steps

	Part II—Projects
	4. Networking a Temperature Monitor
	Understanding the Pico W Device
	Polling the Temperature
	Connecting the Pico W to Wi-Fi
	Creating the Pico W REST Server
	Creating the Prometheus Exporter
	Containing and Deploying the Exporter
	Creating the Grafana Dashboard
	Next Steps

	5. Checking the (Garage) Door
	Understanding the GPIO
	Wiring the Magnetic Switch to the GPIO
	Coding the Magnetic Switch
	Sending Notifications
	Writing the Software
	Configuring and Testing the Application
	Containerizing the Deployment
	Next Steps

	6. Lighting the Weather
	Polling the Weather
	Changing the Color
	Putting It All Together
	Configuring the Application Settings
	Containerizing and Deploying the App
	Next Steps

	7. Watching the Birds
	Setting Up the Camera and InfraRed Sensor
	Writing the Software
	Sending Motion Notifications
	Containing the Application
	Configuring the Bird Feeder
	Next Steps

	8. Go Build
	Designing Additional Projects
	Expanding the Technologies
	Improving Security
	Advancing Electronics
	Having Fun

	Index
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– Y –

